Binary Number Representation

Decimal Representation	Unsigned	Signed-Magnitude	Ones Complement	Twos-Complement	Biased Repentation
Representation	Representation	Representation	Representation		
+8	1000	-	-	-	1111
+7	0111	0111	0111	0111	1110
+6	0110	0110	0110	0110	1101
+5	0101	0101	0101	0101	1100
+4	0100	0100	0100	0100	1011
+3	0011	0011	0011	0011	1010
+2	0010	0010	0010	0010	1001
+1	0001	0001	0001	0001	1000
+0	0000	0000	0000	0000	0111
-0	-	1000	1111	-	-
-1	-	1001	1110	1111	0110
-2	-	1010	1101	1110	0101
-3	-	1011	1100	1101	0100
-4	-	1100	1011	1100	0011
-5	-	1101	1010	1011	0010
-6	-	1110	1001	1010	0001
-7	-	1111	1000	1001	0000
-8	-	-	-	1000	-

All about integer arithmetic.

```
operations we'll get to know (and love):
    addition
    subtraction
    multiplication
    division
    logical operations (not, and, or, nand, nor, xor, xnor)
    shifting
```

The rules for doing the arithmetic operations vary depending on what representation is implied.

A LITTLE BIT ON ADDING

0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

```
                            |
\begin{tabular}{rr}
\(a\) & 0011 \\
\(+b\) & +0001 \\
-- & ---- \\
sum & 0100
\end{tabular}
Just decimal arithmetic
```

```
0 + 0 = 0
```

0 + 0 = 0
1 + 0 = 1
1 + 0 = 1
1 + 1 = 2 which is 10 in binary, sum is 0 and carry the 1.
1 + 1 = 2 which is 10 in binary, sum is 0 and carry the 1.
1 + 1 + 1 = 3 sum is 1, and carry a 1.

```
1 + 1 + 1 = 3 sum is 1, and carry a 1.
```


ADDITION

```
unsigned:
    just like the simple addition given.
    examples:
        100001 00001010 (10)
        +011101 +00001110 (14)
        111110 00011000 (24)
```


sign magnitude:

rules:

- add magnitudes only (do not carry into the sign bit)
- throw away any carry out of the msb of the magnitude (Due, again, to the fixed precision constraints.)
- add only integers of like sign (+ to + or - to -)
- sign of result is same as sign of the addends
examples:

```
    0 0101 (5) 1 1010 (-10)
    + 0 0011 (3) + 1 0011 (-3)
    01000 (8) 1 1101 (-13)
    0 01011 (11)
    + 1 01110 (-14)
```

Don't add! must do subtraction!

one's complement:

by example

```
    00111 (7)
        111110 (-1)
        11110 (-1)
    +00101 (5)
        + 000010 (2)
        + 11100 (-3)
    + 00101 (5)
    -----------
    01100 (12)
1000000 (0) wrong
1 11010 (-5) wrong!
        + 1
        + 1
        000001 (1) right!
        1 1 0 1 1 ~ ( - 4 ) ~ r i g h t !
```

It seems that if there is a carry out (of 1) from the msb, then the
result will be off by 1, so add 1 again to get the correct result.
(Implementation in HW called an "end around carrry.")

two's complement:

```
rules:
    - just add all the bits
    - throw away any carry out of the msb
    - (same as for unsigned!)
examples
```


After seeing examples for all these representations, you may see why 2's complement addition requires simpler hardware than sign mag. or one's complement addition.

SUBTRACTION

```
general rules:
    1 - 1 = 0
    0-0 = 0
    1-0 = 1
    10-1 = 1
    0 - 1 = borrow!
```


unsigned:

It only makes sense to subtract a smaller number from a larger one
examples

- 0111 (7)

0100 (4)

sign magnitude:

- if the signs are the same, then do subtraction
- if signs are different, then change the problem to addition
- compare magnitudes, then subtract smaller from larger
- if the order is switched, then switch the sign too.
- when the integers are of the opposite sign, then do
$\mathrm{a}-\mathrm{b}$ becomes $\mathrm{a}+(-\mathrm{b})$
$\mathrm{a}+\mathrm{b}$ becomes $\mathrm{a}-(-\mathrm{b})$
examples
000111 (7) $111000(-24)$
- 011000 (24) - 100010 (-2)

110110 (-22)

```
do 011000 (24)
- 000111 (7)
```

110001 (-17)
(switch sign since the order of the subtraction was reversed)

one's complement:

```
See examples for one's complement addition
```


two's complement:

```
    - change the problem to addition! a - b becomes a + (-b)
    - so, get the additive inverse of b, and do addition.
        examples
    10110 (-10)
- 00011 (3) --> 00011
------------
        |
        11100
        + 1
    11101 (-3)
so do
        10110 (-10)
    + 11101 (-3)
    1 10011 (-13) (throw away carry out)
```


OVERFLOW DETECTION IN ADDITION

unsigned -- when there is a carry out of the msb

1000
+1001

10001
sign magnitude -- when there is a carry out of the msb of the magnitude

```
    1000 (-8)
+ 1 1001 (-9)
    0001 (-1) (carry out of msb of magnitude)
```


2's complement -

```
when the signs of the addends are the same, and the sign of the result
is different
    0011 (3)
+ 0110 (6)
1001 (-7) (note that a correct answer would be 9, but
    9 cannot be represented in 4 bit 2's complement)
a detail -- you will never get overflow when adding 2 numbers of
        opposite signs
```


OVERFLOW DETECTION IN SUBTRACTION

```
unsigned -- never
sign magnitude -- never happen when doing subtraction
2's complement -- we never do subtraction, so use the addition rule
    on the addition operation done.
```


MULTIPLICATION of integers

```
0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1
```

-- longhand, it looks just like decimal
-- the result can require $2 x$ as many bits as the larger multiplicand
-- in 2's complement, to always get the right answer without thinking about the problem, sign extend both multiplicands to $2 x$ as many bits (as the larger). Then take the correct number of result bits from the least significant portion of the result.

2's complement example:

```
                    1111 1111 -1
                x 1111 1001 x -7
        ----------------------
                        11111111
                            7
                        00000000
                        00000000
                        11111111
                11111111
                11111111
                1 1 1 1 1 1 1 1
    + 11111111
                00000000111
                        -------- (correct answer underlined)
                0011 (3) 0000 0011 (3)
            x 1011 (-5) x 1111 1011 (-5)
            ------ -----------
                    0011
                0 0 1 1
                        00000011
                            00000011
            0000 00000000
    + 0011
                                00000011
                                00000011
                                00000011
            0100001
                00000011
not -15 in any
    representation!
                                + 00000011
take the least significant 8 bits 11110001 = -15
```


DIVISION of integers

unsigned only!
example of 15 / 3111 / 011
To do this longhand, use the same algorithm as for decimal integers.

LOGICAL OPERATIONS

```
X = 0011
Y = 1010
```

| X | AND | Y is | 0010 |
| :--- | ---: | :--- | :--- | :--- |
| X | OR | Y is | 1011 |
| X | NOR | Y is | 0100 |
| X | XOR | Y is | 1001 |
| | | etc. | |

SHIFT OPERATIONS

a way of moving bits around within a word
3 types: logical, arithmetic and rotate (each type can go either left or right)
logical left

- move bits to the left, same order
- throw away the bit that pops off the msb
- introduce a 0 into the lsb

00110101

01101010 (logically left shifted by 1 bit)
logical right - move bits to the right, same order

- throw away the bit that pops off the lsb
- introduce a 0 into the msb

00110101
00011010 (logically right shifted by 1 bit)
arithmetic left

- move bits to the left, same order
- throw away the bit that pops off the msb
- introduce a 0 into the lsb
- SAME AS LOGICAL LEFT SHIFT!
arithmetic right - move bits to the right, same order - throw away the bit that pops off the lsb
- reproduce the original msb into the new msb
- another way of thinking about it: shift the bits, and then do sign extension

00110101 -> 00011010 (arithmetically right shifted by 1 bit)
1100 -> 1110 (arithmetically right shifted by 1 bit)
rotate left - move bits to the left, same order

- put the bit that pops off the msb into the lsb, so no bits are thrown away or lost.

00110101 -> 01101010 (rotated left by 1 place) 1100 -> 1001 (rotated left by 1 place)
rotate right - move bits to the right, same order

- put the bit that pops off the lsb into the msb, so no bits are thrown away or lost.

00110101 -> 10011010 (rotated right by 1 place)
1100 -> 0110 (rotated right by 1 place)

