
POINTERS AND ARRAYS IN C

There are things and pointers to things. Knowing the difference between the two is very
important. This concept is illustrated in Figure 13-1.
Figure 13-1. A thing and a pointer to a thing

In this book, we use a box to represent a thing. The name of the variable is written on the
bottom of the box. In this case, our variable is named thing. The value of the variable is 6.
The address of thing is 0x1000. Addresses are automatically assigned by the C compiler to
every variable. Normally, you don't have to worry about the addresses of variables, but
you should understand that they're there.
Our pointer (thing_ptr) points to the variable thing. Pointers are also called address
variables because they contain the addresses of other variables. In this case, our pointer
contains the address 0x1000. Because this is the address of thing, we say that thing_ptr
points to thing.
Variables and pointers are much like street addresses and houses. For example, your
address might be "214 Green Hill Lane." Houses come in many different shapes and
sizes. Addresses are approximately the same size (street, city, state, and zip). So, while
"1600 Pennsylvania Ave." might point to a very big white house and "8347 Undersea
Street" might be a one-room shack, both addresses are the same size.
The same is true in C. While things may be big and small, pointers come in one size
(relatively small).[1]
Many novice programmers get pointers and their contents confused. In order to limit this
problem, all pointer variables in this book end with the extension _ptr. You might want to
follow this convention in your own programs. Although this notation is not as common as
it should be, it is extremely useful.
Many different address variables can point to the same thing. This concept is true for
street addresses as well. Table 13-1 lists the location of important services in a small
town.

Table 13-1: Directory of Ed's Town USA

Service
(variable name)

Address
(address value)

Building
(thing)

Fire Department 1 Main Street City Hall

Police Station 1 Main Street City Hall

Planning office 1 Main Street City Hall

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Gas Station 2 Main Street Ed's Gas Station

In this case, we have a government building that serves many functions. Although it has
one address, three different pointers point to it.
As we will see in this chapter, pointers can be used as a quick and simple way to access
arrays. In later chapters, we will discover how pointers can be used to create new
variables and complex data structures such as linked lists and trees. As you go through
the rest of the book, you will be able to understand these data structures as well as create
your own.
A pointer is declared by putting an asterisk (*) in front of the variable name in the
declaration statement:

int thing; /* define a thing * /
int * thing_ptr; /* define a pointer to a thing */

Table 13-2 lists the operators used in conjunction with pointers.

Table 13-2: Pointer Operators

Operator Meaning
* Dereference (given a pointer, get the thing referenced)

& Address of (given a thing, point to it)

The operator ampersand (&) returns the address of a thing which is a pointer. The
operator asterisk (*) returns the object to which a pointer points. These operators can
easily cause confusion. Table 13-3 shows the syntax for the various pointer operators.

Table 13-3: Pointer Operator Syntax

C Code Description
thing Simple thing (variable)
&thing Pointer to variable thing

thing_ptr Pointer to an integer (may or may not be specific integer thing)
* thing_ptr Integer
Let's look at some typical uses of the various pointer operators:

int thing; /* Declare an integer (a thing) * /
thing = 4;

The variable thing is a thing. The declaration int thing does not contain an *, so thing is not a
pointer:

int * thing_ptr; /* Declare a pointer to a thing */
The variable thing_ptr is a pointer. The * in the declaration indicates this is a pointer. Also,
we have put the extension _ptr onto the name:

thing_ptr = &thing; /* Point to the thing */
The expression &thing is a pointer to a thing. The variable thing is an object. The &
(address of operator) gets the address of an object (a pointer), so &thing is a pointer. We
then assign this to thing_ptr, also of type pointer:

* thing_ptr = 5; /* Set "thing" to 5 * /
 /* We may or may not be pointing * /

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 /* to the specific integer "thing" * /
The expression * thing_ptr indicates a thing. The variable thing_ptr is a pointer. The *
(dereference operator) tells C to look at the data pointed to, not the pointer itself. Note
that this points to any integer. It may or may not point to the specific variable thing.

Introduction
These pointer operations are summarized in Figure 13-2.
Figure 13-2. Pointer operations

The following examples show how to misuse the pointer operations:
* thing

is illegal. It asks C to get the object pointed to by the variable thing.
Because thing is not a pointer, this operation is invalid.

& thing_ptr

is legal, but strange. thing_ptr is a pointer. The & (address of operator) gets
a pointer to the object (in this case thing_ptr). The result is a pointer to a
pointer.

Example 13-1 illustrates a simple use of pointers. It declares one object, one thing, and a
pointer, thing_ptr. thing is set explicitly by the line:

thing = 2;
The line:

thing_ptr = &thing;
causes C to set thing_ptr to the address of thing. From this point on, thing and * thing_ptr are
the same.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Example 13-1: thing/thing.c

#include <stdio.h>
int main()
{
 int thing_var; /* define a variable for thing */
 int * thing_ptr; /* define a pointer to thing */

 thing_var = 2; /* assigning a value to thing * /
 printf("Thing %d\n", thing_var);

 thing_ptr = &thing_var; /* make the pointer point to thing */
 * thing_ptr = 3; /* thing_ptr points to thing_var so * /
 /* thing_var changes to 3 * /
 printf("Thing %d\n", thing_var);

 /* another way of doing the printf * /
 printf("Thing %d\n", *thing_ptr);
 return (0);
}

Several pointers can point to the same thing:
1: int something;
2:
3: int * first_ptr; /* one pointer */
4: int *second_ptr; /* another pointer */
5:
6: something = 1; /* give the thing a value * /
7:
8: first_ptr = &something;
9: second_ptr = first_ptr;

In line 8, we use the & operator to change something, a thing, into a pointer that can be
assigned to first_ptr. Because first_ptr and second_ptr are both pointers, we can do a direct
assignment in line 9.
After executing this program fragment, we have the situation shown in Figure 13-3.
Figure 13-3. Two pointers and a thing

You should note that while we have three variables, there is only one integer (something).
The following are all equivalent:

something = 1;
* first_ptr = 1;
*second_ptr = 1;

Pointers as Function Arguments

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

C passes parameters using "call by value." That is, the parameters go only one way into
the function. The only result of a function is a single return value. This concept is
illustrated in Figure 13-4.
Figure 13-4. Function call

However, pointers can be used to get around this restriction.
Imagine that there are two people, Sam and Joe, and whenever they meet, Sam can only
talk and Joe can only listen. How is Sam ever going to get any information from Joe?
Simple: all Sam has to do is tell Joe, "I want you to leave the answer in the mailbox at
335 West 5th Street."
C uses a similar trick to pass information from a function to its caller. In Example 13-2,
main wants the function inc_count to increment the variable count.
Passing it directly would not work, so a pointer is passed instead ("Here's the address of
the variable I want you to increment"). Note that the prototype for inc_count contains an int
* . This format indicates that the single parameter given to this function is a pointer to an
integer, not the integer itself.
Example 13-2: call/call.c

#include <stdio.h>
void inc_count(int *count_ptr)
{
 (*count_ptr)++;
}

int main()
{
 int count = 0; /* number of times through * /

 while (count < 10)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 inc_count(&count);

 return (0);
}

This code is represented graphically in Figure 13-5. Note that the parameter is not
changed, but what it points to is changed.

Figure 13-5. Call of inc_count

Finally, there is a special pointer called NULL. It points to nothing. (The actual numeric
value is 0.) The standard include file, locale.h, defines the constant NULL. (This file is
usually not directly included, but is usually brought in by the include files stdio.h or
stdlib.h.) The NULL pointer is represented graphically in Figure 13-6.
Figure 13-6. NULL

const Pointers

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Declaring constant pointers is a little tricky. For example, the declaration:
const int result = 5;

tells C that result is a constant so that:
result = 10; /* Illegal * /

is illegal. The declaration:
const char *answer_ptr = "Forty-Two";

does not tell C that the variable answer_ptr is a constant. Instead, it tells C that the data
pointed to by answer_ptr is a constant. The data cannot be changed, but the pointer can.
Again we need to make sure we know the difference between "things" and "pointers to
things."
What's answer_ptr? A pointer. Can it be changed? Yes, it's just a pointer. What does it
point to? A const char array. Can the data pointed to by answer_ptr be changed? No, it's
constant.
In C this is:

answer_ptr = "Fifty-One"; /* Legal (answer_ptr is a variable) */
answer_ptr = 'X'; / Illegal (*answer_ptr is a constant) * /

If we put the const after the * we tell C that the pointer is constant.
For example:

char *const name_ptr = "Test";
What's name_ptr? It is a constant pointer. Can it be changed? No. What does it point to? A
character. Can the data we pointed to by name_ptr be changed? Yes.

name_ptr = "New"; /* Illegal (name_ptr is constant) */
name_ptr = 'B'; / Legal (*name_ptr is a char) * /

Finally, we can put const in both places, creating a pointer that cannot be changed to a
data item that cannot be changed:

const char *const title_ptr = "Title";

Pointers and Ar rays
C allows pointer arithmetic (addition and subtraction). Suppose we have:

char array[5];
char *array_ptr = &array[0];

In this example, *array_ptr is the same as array[0], * (array_ptr+1) is the same as array[1],
* (array_ptr+2) is the same as array[2], and so on. Note the use of parentheses. Pointer
arithmetic is represented graphically in Figure 13-7.
Figure 13-7. Pointers into an array

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

However, (*array_ptr)+1 is not the same as array[1]. The +1 is outside the parentheses, so it
is added after the dereference. So (*array_ptr)+1 is the same as array[0]+1.
At first glance, this method may seem like a complex way of representing simple array
indices. We are starting with simple pointer arithmetic. In later chapters we will use more
complex pointers to handle more difficult functions efficiently.
The elements of an array are assigned to consecutive addresses. For example, array[0] may
be placed at address 0xff000024. Then array[1] would be placed at address 0xff000025, and so
on. This structure means that a pointer can be used to find each element of the array.
Example 13-3 prints out the elements and addresses of a simple character array.
Example 13-3: array-p/array-p.c

#include <stdio.h>

#define ARRAY_SIZE 10 /* Number of characters in array * /
/* Array to print * /
char array[ARRAY_SIZE] = "0123456789";

int main()
{
 int index; /* Index into the array * /

 for (index = 0; index < ARRAY_SIZE; ++index) {
 printf("&array[index]=0x%p (array+index)=0x%p array[index]=0x%x\n",
 &array[index], (array+index), array[index]);
 }
 return (0);
}

NOTE: When printing pointers, the special conversion %p should be used.

When run, this program prints:
&array[index] (array+index) array[index]
0x40b0 0x40b0 0x30
0x40b1 0x40b1 0x31
0x40b2 0x40b2 0x32
0x40b3 0x40b3 0x33
0x40b4 0x40b4 0x34
0x40b5 0x40b5 0x35
0x40b6 0x40b6 0x36
0x40b7 0x40b7 0x37
0x40b8 0x40b8 0x38
0x40b9 0x40b9 0x39

Characters use one byte, so the elements in a character array will be assigned consecutive
addresses. A short int font uses two bytes, so in an array of short int, the addresses increase
by two. Does this mean that array+1 will not work for anything other than characters? No.
C automatically scales pointer arithmetic so that it works correctly. In this case, array+1
will point to element number 1.
C provides a shorthand for dealing with arrays. Rather than writing:

array_ptr = &array[0];
we can write:

array_ptr = array;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

C blurs the distinction between pointers and arrays by treating them in the same manner
in many cases. Here we use the variable array as a pointer, and C automatically does the
necessary conversion.
Example 13-4 counts the number of elements that are nonzero and stops when a zero is
found. No limit check is provided, so there must be at least one zero in the array.
Example 13-4: ptr2/ptr2.c

#include <stdio.h>

int array[] = { 4, 5, 8, 9, 8, 1, 0, 1, 9, 3} ;
int index;

int main()
{
 index = 0;
 while (array[index] != 0)
 ++index;

 printf("Number of elements before zero %d\n",
 index);
 return (0);
}
Example 13-5 is a version of Example 13-4 that uses pointers.
Example 13-5: ptr3/ptr3.c

#include <stdio.h>

int array[] = { 4, 5, 8, 9, 8, 1, 0, 1, 9, 3} ;
int *array_ptr;

int main()
{
 array_ptr = array;

 while ((*array_ptr) != 0)
 ++array_ptr;

 printf("Number of elements before zero %d\n",
 array_ptr - array);
 return (0);
}
Notice that when we wish to examine the data in the array, we use the dereference
operator (*). This operator is used in the statement:

while ((*array_ptr) != 0)
When we wish to change the pointer itself, no other operator is used. For example, the
line:

++array_ptr;
increments the pointer, not the data.
Example 13-4 uses the expression (array[index] != 0). This expression requires the compiler
to generate an index operation, which takes longer than a simple pointer dereference,
((*array_ptr) != 0).

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

The expression at the end of this program, array_ptr - array, computes how far array_ptr is
into the array.
When passing an array to a procedure, C will automatically change the array into a
pointer. In fact, if you put & before the array, C will issue a warning. Example 13-6
illustrates the various ways in which an array can be passed to a subroutine.
Example 13-6: init-a/init-a.c (continued)

#define MAX 10 /* Size of the array * /
/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * init_array_1 -- Zeroes out an array. *
 * *
 * Parameters *
 * data -- The array to zero out. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
void init_array_1(int data[])
{
 int index;

 for (index = 0; index < MAX; ++index)
 data[index] = 0;
}

/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * init_array_2 -- Zeroes out an array. *
 * *
 * Parameters *
 * data_ptr -- Pointer to array to zero. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
void init_array_2(int *data_ptr)
{
 int index;

 for (index = 0; index < MAX; ++index)
 * (data_ptr + index) = 0;
}
int main()
{
 int array[MAX];

 void init_array_1();
 void init_array_2();

 /* one way of initializing the array * /
 init_array_1(array);

 /* another way of initializing the array * /
 init_array_1(&array[0]);

 /* works, but the compiler generates a warning * /
 init_array_1(&array);

 /* Similar to the first method but * /
 /* function is different */
 init_array_2(array);

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 return (0);
}

How Not to Use Pointers
The major goal of this book is to teach you how to create clear, readable, maintainable
code. Unfortunately, not everyone has read this book and some people still believe that
you should make your code as compact as possible. This belief can result in programmers
using the ++ and -- operators inside other statements.
Example 13-7 shows several examples in which pointers and the increment operator are
used together.
Example 13-7: Bad Pointer Usage

/* This program shows programming practices that should ** NOT** be used * /
/* Unfortunately, too many programmers use them * /
int array[10]; /* An array for our data * /
int main()
{
 int *data_ptr; /* Pointer to the data */
 int value; /* A data value * /

 data_ptr = &array[0];/* Point to the first element */
 value = *data_ptr++; /* Get element #0, data_ptr points to element #1 * /
 value = *++data_ptr; /* Get element #2, data_ptr points to element #2 * /
 value = ++*data_ptr; /* Increment element #2, return its value * /
 /* Leave data_ptr alone */

To understand each of these statements, you must carefully dissect each expression to
discover its hidden meaning. When I do maintenance programming, I don't want to have
to worry about hidden meanings, so please don't code like this, and shoot anyone who
does.
These statements are dissected in Figure 13-8.
Figure 13-8. Pointer operations dissected

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

This example is a little extreme, but it illustrates how side effects can easily become
confusing.
Example 13-8 is an example of the code you're more likely to run into. The program
copies a string from the source (p) to the destination (q).
Example 13-8: Cryptic Use of Pointers

void copy_string(char *p, char *q)
{
 while (*p++ = *q++);
}
Given time, a good programmer will decode this. However, understanding the program is
much easier when we are a bit more verbose, as in Example 13-9.
Example 13-9: Readable Use of Pointers

/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * copy_string -- Copies one string to another. *
 * *
 * Parameters *
 * dest -- Where to put the string *
 * source -- Where to get it *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
void copy_string(char *dest, char *source)
{
 while (1) {
 *dest = *source;

 /* Exit if we copied the end of string * /
 if (*dest == '\0')
 return;

 ++dest;
 ++source;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 }
}

Using Pointers to Split a Str ing
Suppose we are given a string of the form "Last/First." We want to split this into two
strings, one containing the first name and one containing the last name.
We need a function to find the slash in the name. The standard function strchr performs
this job for us. In this program, we have chosen to duplicate this function to show you
how it works.
This function takes a pointer to a string (string_ptr) and a character to find (find) as its
arguments. It starts with a while loop that will continue until we find the character we are
looking for (or we are stopped by some other code below).

while (*string_ptr != find) {
Next we test to see if we've run out of string. In this case, our pointer (string_ptr) points to
the end-of-string character. If we have reached the end of string before finding the
character, we return NULL:

if (*string_ptr == '\0')
 return (NULL);

If we get this far, we have not found what we are looking for, and are not at the end of the
string. So we move the pointer to the next character, and return to the top of the loop to
try again:

++string_ptr;
}

Our main program reads in a single line, stripping the newline character from it. The
function my_strchr is called to find the location of the slash (/).
At this point, last_ptr points to the first character of the last name and first_ptr points to
slash. We then split the string by replacing the slash (/) with an end of string (NUL or \0).
Now last_ptr points to just the last name and first_ptr points to a null string. Moving first_ptr
to the next character makes it point to the beginning of the first name.
The sequence of steps in splitting the string is illustrated in Figure 13-9.
Figure 13-9. Splitting a str ing

Example 13-10 contains the full program, which demonstrates how pointers and character
arrays can be used for simple string processing.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Example 13-10: split/split.c (continued)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * my_strchr -- Finds a character in a string. *
 * Duplicate of a standard library function, *
 * put here for illustrative purposes *
 * *
 * Parameters *
 * string_ptr -- String to look through. *
 * find -- Character to find. *
 * *
 * Returns *
 * pointer to 1st occurrence of character *
 * in string or NULL for error. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
char *my_strchr(char * string_ptr, char find)
{
 while (*string_ptr != find) {

 /* Check for end * /

 if (*string_ptr == '\0')
 return (NULL); /* not found */

 ++string_ptr;
 }
 return (string_ptr); /* Found */
}

int main()
{
 char line[80]; /* The input line * /
 char * first_ptr; /* pointer to the first name * /
 char *last_ptr; /* pointer to the last name * /

 fgets(line, sizeof(line), stdin);

 /* Get rid of trailing newline */
 line[strlen(line)-1] = '\0';

 last_ptr = line; /* last name is at beginning of line */

 first_ptr = my_strchr(line, '/'); /* Find slash * /

 /* Check for an error * /
 if (first_ptr == NULL) {
 fprintf(stderr,
 "Error: Unable to find slash in %s\n", line);
 exit (8);
 }

 * first_ptr = '\0'; /* Zero out the slash * /

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 ++first_ptr; /* Move to first character of name * /

 printf("First:%s Last:%s\n", first_ptr, last_ptr);
 return (0);
}
Question 13-2: Example 13-11 is supposed to print out:

Name: tmp1
but instead, we get:

Name: !_@$#ds80
(Your results may vary.) Why?
Example 13-11: tmp-name/tmp-name.c

#include <stdio.h>
#include <string.h>

/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * tmp_name -- Return a temporary filename. *
 * *
 * Each time this function is called, a new name will *
 * be returned. *
 * *
 * Returns *
 * Pointer to the new filename. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
char * tmp_name(void)
{
 char name[30]; /* The name we are generating * /
 static int sequence = 0; /* Sequence number for last digit */

 ++sequence; /* Move to the next filename * /

 strcpy(name, "tmp");

 /* But in the sequence digit * /
 name[3] = sequence + '0';

 /* End the string * /
 name[4] = '\0';

 return(name);
}

int main()
{
 char *tmp_name(void); /* Get name of temporary file * /

 printf("Name: %s\n", tmp_name());
 return(0);
}

Pointers and Structures
In Chapter 12, Advanced Types, we defined a structure for a mailing list:

struct mailing {

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 char name[60]; /* last name, first name */
 char address1[60];/* two lines of street address * /
 char address2[60];
 char city[40];
 char state[2]; /* two-character abbreviation */
 long int zip; /* numeric zip code * /
} list[MAX_ENTRIES];

Mailing lists must frequently be sorted by name and zip code. We could sort the entries
themselves, but each entry is 226 bytes long. That's a lot of data to move around. One
way around this problem is to declare an array of pointers, and then sort the pointers:

/* Pointer to the data * /
struct mailing * list_ptrs[MAX_ENTRIES];
int current; /* current mailing list entry * /

 for (current = 0; current = number_of_entries; ++current)
 list_ptrs[current] = &list[current];
 /* Sort list_ptrs by zip code * /

Now, instead of having to move a 226-byte structure around, we are moving 4-byte
pointers. Our sorting is much faster. Imagine that you had a warehouse full of big heavy
boxes and you needed to locate any box quickly. You could put them in alphabetical
order, but that would require a lot of moving. Instead, you assign each location a number,
write down the name and number on index cards, and sort the cards by name.

Command-L ine Arguments
The procedure main actually takes two arguments. They are called argc and argv[2]:

main(int argc, char *argv[])
{

(If you realize that the arguments are in alphabetical order, you can easily remember
which one comes first.)
The parameter argc is the number of arguments on the command line (including the
program name). The array argv contains the actual arguments. For example, if the
program args were run with the command line:

args this is a test
then:

 argc = 5
argv[0] = "args"
argv[1] = "this"
argv[2] = "is"
argv[3] = "a"
argv[4] = "test"
argv[5] = NULL

NOTE: The UNIX shell expands wildcard characters like * , ?, and []
before sending the command line to the program. See your sh or csh
manual for details.

Turbo C++ and Borland C++ expand wildcard characters if the file
WILDARG.OBJ is linked with your program. See the manual for details.

Almost all UNIX commands use a standard command-line format. This standard has
carried over into other environments. A standard UNIX command has the form:

command options file1 file1 file3 ...

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Options are preceded by a dash (-) and are usually a single letter. For example, the option
-v might turn on verbose mode for a particular command. If the option takes a parameter,
it follows the letter. For example, the option -m1024 sets the maximum number of symbols
to 1024 and -ooutfile sets the output filename to outfile.
Let's look at writing a program that can read the command-line arguments and act
accordingly. This program formats and prints files. Part of the documentation for the
program is given here:

print_file [-v] [-llength] [-oname] [file1] [file2] ...
where:
-v

specifies verbose options; turns on a lot of progress information messages

-llength

sets the page size to length lines (default = 66)

-oname

sets the output file to name (default = print.out)

file1, file2, ...

is a list of files to print. If no files are specified, the file print.in is printed.

We can use a while loop to cycle through the command-line options. The actual loop is:
while ((argc > 1) && (argv[1][0] == '-')) {

One argument always exists: the program name. The expression (argc > 1) checks for
additional arguments. The first one is numbered 1. The first character of the first
argument is argv[1][0]. If this is a dash, we have an option.
At the end of the loop is the code:

 --argc;
 ++argv;
}

This consumes an argument. The number of arguments is decremented to indicate one
less option, and the pointer to the first option is incremented, shifting the list to the left
one place. (Note: after the first increment, argv[0] no longer points to the program name.)
The switch statement is used to decode the options. Character 0 of the argument is the
dash (-). Character 1 is the option character, so we use the expression:

switch (argv[1][1]) {
to decode the option.
The option -v has no arguments; it just causes a flag to be set.
The option -o takes a filename. Rather than copy the whole string, we set the character
pointer out_file to point to the name part of the string. By this time we know the following:

argv[1][0] ='-'
argv[1][1] ='o'
argv[1][2] = first character of the filename

We set out_file to point to the string with the statement:
out_file = &argv[1][2];

The address of operator (&) is used to get the address of the first character in the output
filename. This process is appropriate because we are assigning the address to a character
pointer named out_file.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

The -l option takes an integer argument. The library function atoi is used to convert the
string into an integer. From the previous example, we know that argv[1][2] is the first
character of the string containing the number. This string is passed to atoi.
Finally, all the options are parsed and we fall through to the processing loop. This merely
executes the function do_file for each file argument. Example 13-12 contains the print
program.
This is one way of parsing the argument list. The use of the while loop and switch
statement is simple and easy to understand. This method does have a limitation. The
argument must immediately follow the options. For example, -odata.out will work, but "-o
data.out" will not. An improved parser would make the program more friendly, but the
techniques described here work for simple programs.
Example 13-12: print/print.c (continued)

[File: print/print.c]
/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * Program: Print *
 * *
 * Purpose: *
 * Formats files for printing. *
 * *
 * Usage: *
 * print [options] file(s) *
 * *
 * Options: *
 * -v Produces verbose messages. *
 * -o<file> Sends output to a file *
 * (default=print.out). *
 * -l<lines> Sets the number of lines/page *
 * (default=66). *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
#include <stdio.h>
#include <stdlib.h>

int verbose = 0; /* verbose mode (default = false) */
char *out_file = "print.out"; /* output filename */
char *program_name; /* name of the program (for errors) */
int line_max = 66; /* number of lines per page * /

/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * do_file -- Dummy routine to handle a file. *
 * *
 * Parameter *
 * name -- Name of the file to print. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
void do_file(char *name)
{
 printf("Verbose %d Lines %d Input %s Output %s\n",
 verbose, line_max, name, out_file);
}
/***** ****** ****** ***** ****** ****** ****** ****** ****** *****
 * usage -- Tells the user how to use this program and *
 * exit. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

void usage(void)
{
 fprintf(stderr,"Usage is %s [options] [file-list]\n",
 program_name);
 fprintf(stderr,"Options\n");
 fprintf(stderr," -v verbose\n");
 fprintf(stderr," -l<number> Number of lines\n");
 fprintf(stderr," -o<name> Set output filename\n");
 exit (8);
}
int main(int argc, char *argv[])
{
 /* save the program name for future use * /
 program_name = argv[0];

 /*
 * loop for each option
 * Stop if we run out of arguments
 * or we get an argument without a dash
 */
 while ((argc > 1) && (argv[1][0] == '-')) {
 /*
 * argv[1][1] is the actual option character
 */
 switch (argv[1][1]) {
 /*
 * -v verbose
 * /
 case 'v':
 verbose = 1;
 break;
 /*
 * -o<name> output file
 * [0] is the dash
 * [1] is the "o"
 * [2] starts the name
 * /
 case 'o':
 out_file = &argv[1][2];
 break;
 /*
 * -l<number> set max number of lines
 * /
 case 'l':
 line_max = atoi(&argv[1][2]);
 break;
 default:
 fprintf(stderr,"Bad option %s\n", argv[1]);
 usage();
 }
 /*
 * move the argument list up one
 * move the count down one
 */
 ++argv;
 --argc;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 }

 /*
 * At this point, all the options have been processed.
 * Check to see if we have no files in the list.
 * If no files exist, we need to process just standard input stream.
 */
 if (argc == 1) {
 do_file("print.in");
 } else {
 while (argc > 1) {
 do_file(argv[1]);
 ++argv;
 --argc;
 }
 }
 return (0);
}

Programming Exercises
Exercise 13-1: Write a program that uses pointers to set each element of an array to zero.
Exercise 13-2: Write a function that takes a single string as its argument and returns a
pointer to the first nonwhite character in the string.

Answers
Answer 13-1: The problem is that the variable name is a temporary variable. The
compiler allocates space for the name when the function is entered and reclaims the space
when the function exits. The function assigns name the correct value and returns a pointer
to it. However, the function is over, so name disappears and we have a pointer with an
illegal value.
The solution is to declare name static. In this manner, name is a permanent variable and
will not disappear at the end of the function.
Question 13-2: After fixing the function, we try using it for two filenames. Example 13-
13 should print out:

Name: tmp1
Name: tmp2

but it doesn't. What does it print and why?
Example 13-13: tmp2/tmp2.c

#include <stdio.h>
#include <string.h>

/***** ****** ****** ***** ****** ****** ****** ****** ****** ****
 * tmp_name -- Returns a temporary filename. *
 * *
 * Each time this function is called, a new name will *
 * be returned. *
 * *
 * Warning: There should be a warning here, but if we *
 * put it in, we would answer the question. *
 * *
 * Returns *

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 * Pointer to the new filename. *
 * ********* ****** ****** ***** ****** ****** ****** ****** **** */
char * tmp_name(void)
{
 static char name[30]; /* The name we are generating * /
 static int sequence = 0; /* Sequence number for last digit */

 ++sequence; /* Move to the next filename * /

 strcpy(name, "tmp");

 /* But in the squence digit * /
 name[3] = sequence + '0';

 /* End the string * /
 name[4] = '\0';

 return(name);
}

int main()
{
 char *tmp_name(void); /* get name of temporary file * /
 char *name1; /* name of a temporary file * /
 char *name2; /* name of a temporary file * /

 name1 = tmp_name();
 name2 = tmp_name();

 printf("Name1: %s\n", name1);
 printf("Name2: %s\n", name2);
 return(0);
}
Answer 13-2: The first call to tmp_name returns a pointer to name. There is only one name.
The second call to tmp_name changes name and returns a pointer to it. So we have two
pointers, and they point to the same thing, name.
Several library functions return pointers to static strings. A second call to one of these
routines will overwrite the first value. A solution to this problem is to copy the values as
shown below:

char name1[100];
char name2[100];
strcpy(name1, tmp_name());
strcpy(name2, tmp_name());

This problem is a good illustration of the basic meaning of a pointer; it doesn't create any
new space for data, but just refers to data that is created elsewhere.
This problem is also a good example of a poorly designed function. The problem is that
the function is tricky to use. A better design would make the code less risky to use. For
example, the function could take an additional parameter: the string in which the filename
is to be constructed:

void tmp_name(char *name_to_return);

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

1. This statement is not strictly true for MS-DOS/Windows compilers. Because of the
strange architecture of the 8086, these compilers are forced to use both near pointers (16
bits) and far pointers (32 bits). See your C compiler manual for details.
2. Actually, they can be named anything. However, in 99.9% of programs, they are
named argc and argv. When most programmers encounter the other 0.1%, they curse
loudly, and then change the names to argc and argv.

UNDERSTANDING POINTERS
(for beginners)

INTRODUCTION:

 Over a period of several years of monitoring varioustelecommunication conferences on
C I have noticed that one of themost difficult problems for beginners was the
understanding ofpointers. After writing dozens of short messages in attempts toclear up
various fuzzy aspects of dealing with pointers, I set upa series of messages arranged in
"chapters" which I could drawfrom or email to various individuals who appeared to need
help inthis area.

CCCHHHAAAPPPTTTEEERRR 111::: WWWhhhaaattt iiisss aaa pppoooiiinnnttteeerrr???
 One of the things beginners in C find most difficult tounderstand is the concept of
pointers. The purpose of thisdocument is to provide an introduction to pointers and their
useto these beginners.
 I have found that often the main reason beginners have a problem with pointers is that
they have a weak or minimal feelingfor variables, (as they are used in C). Thus we start
with adiscussion of C variables in general.

 A variable in a program is something with a name, the value of which can vary. The
way the compiler and linker handles this is that it assigns a specific block of memory
within the computerto hold the value of that variable. The size of that blockdepends on
the range over which the variable is allowed to vary.For example, on PC's the size of an
integer variable is 2 bytes,and that of a long integer is 4 bytes. In C the size of a
variable type such as an integer need not be the same on all types of machines.

 When we declare a variable we inform the compiler of two things, the name of the
variable and the type of the variable. For example, we declare a variable of type integer
with the name k by writing:

 int k;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 On seeing the "int" part of this statement the compiler sets aside 2 bytes (on a PC) of
memory to hold the value of the integer. It also sets up a symbol table. And in that table
it adds the symbol k and the address in memory where those 2 bytes were set aside.

 Thus, later if we write:

 k = 2;

at run time we expect that the value 2 will be placed in that memory location reserved for
the storage of the value of k. In a sense there are two "values" associated with k, one
being the value of the integer stored there (2 in the above example) and the other being
the "value" of the memory location where it is stored, i.e. the address of k. Some texts
refer to these two values with the nomenclature rvalue (right value, pronounced "are
value") and lvalue (left value, pronunced "el value") respectively.

 The lvalue is the value permitted on the left side of the assignment operator '=' (i.e. the
address where the result of evaluation of the right side ends up). The rvalue is that which
is on the right side of the as signment statment, the '2' above. Note that rvalues cannot be
used on the left side of the assignment statement. Thus: 2 = k; is illegal.

 Okay, now consider:

 int j, k;
 k = 2;
 j = 7; <-- line 1
 k = j; <-- line 2

 In the above, the compiler interprets the j in line 1 as the address of the variable j (its
lvalue) and creates code to copy the value 7 to that address. In line 2, however, the j is
interpreted as its rvalue (since it is on the right hand side of the assignment operator '=').
That is, here the j refers to the value _stored_ at the memory location set aside for j, in
this case 7. So, the 7 is copied to the address designated by the lvalue of k.

 In all of these examples, we are using 2 byte integers so all copying of rvalues from
one storage location to the other is done by copying 2 bytes. Had we been using long
integers, we would be copying 4 bytes.

 Now, let's say that we have a reason for wanting a variable designed to hold an lvalue
(an address). The size required to hold such a value depends on the system. On older
desk top computers with 64K of memory total, the address of any point in memory can
be contained in 2 bytes. Computers with more memory would require more bytes to hold
an address. Some computers, such as the IBM PC might require special handling to hold
a segment and offset under certain circumstances. The actual size required is not too
important so long as we have a way of informing the compiler that what we want to store
is an address.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Such a variable is called a "pointer variable" (for reasons which will hopefully become
clearer a little later). In C when we define a pointer variable we do so by preceding its
name with an asterisk. In C we also give our pointer a type which, in this case, refers to
the type of data stored at the address we will be storing in our pointer. For example,
consider the variable definition:

 int *ptr;

 ptr is the _name_ of our variable (just as 'k' was the name of our integer variable). The
'* ' informs the compiler that we want a pointer variable, i.e. to set aside however many
bytes is required to store an address in memory. The "int" says that we intend to use our
pointer variable to store the address of an integer. Such a pointer is said to "point to" an
integer. Note, however, that when we wrote "int k;" we did not give k a value.If this
definiton was made outside of any function many compilers will initialize it to zero.

Simlarly, ptr has no value, that is we haven't stored an address in it in the above
definition. In this case, again if the definition is outside of any function, it is intialized to
a value #defined by your compiler as NULL. It is called a NULL pointer. While in most
cases NULL is #defined as zero, it need not be. That is, different compilers handle this
differently. Also note that while zero is an integer, NULL need not be.

 But, back to using our new variable ptr. Suppose now that we want to store in ptr the
address of our integer variable k. To do this we use the unary '& ' operator and write:

 ptr = &k;

 What the '& ' operator does is retrieve the lvalue (address) of k, even though k is on the
right hand side of the assignment operator '=', and copies that to the contents of our
pointer ptr.

Now, ptr is said to "point to" k. Bear with us now, there isonly one more operator we
need to discuss.

 The "dereferencing operator" is the asterisk and it is used as follows:

 *ptr = 7;

will copy 7 to the address pointed to by ptr. Thus if ptr "points to" (contains the address
of) k, the above statement will set the value of k to 7. That is, when we use the '* ' this
way we are refering to the value of that which ptr is pointing at, not the value of the
pointer itself.

 Similarly, we could write:

 printf("%d\n",*ptr);

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

to print to the screen the integer value stored at the address pointed to by "ptr".

 One way to see how all this stuff fits together would be to run the following program
and then review the code and the output carefully.

#include <stdio.h>

int j, k;
int *ptr;

int main(void)
{
 j = 1;
 k = 2;
 ptr = &k;
 printf("\n");
 printf("j has the value %d and is stored at %p\n",j,& j);
 printf("k has the value %d and is stored at %p\n",k,&k);
 printf("ptr has the value %p and is stored at %p\n",ptr,&ptr);
 printf("The value of the integer pointed to by ptr is %d\n",
 *ptr);
 return 0;
}

To review:

 A variable is defined by giving it a type and a name (e.g. int k;)

 A pointer variable is defined by giving it a type and a name (e.g. int *ptr) where the
asterisk tells the compiler that the variable named ptr is a pointer variable and the type
tells the compiler what type the pointer is to point to (integer in this case).

Once a variable is defined, we can get its address by preceding its name with the unary
'& ' operator, as in &k.

 We can "dereference" a pointer, i.e. refer to the value of that which it points to, by
using the unary '* ' operator as
 in *ptr.

 An "lvalue" of a variable is the value of its address, i.e. where it is stored in memory.
The "rvalue" of a variable is the value stored in that variable (at that address).

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

CHAPTER 2: Pointer types and Arrays

 Okay, let's move on. Let us consider why we need to identify the "type" of variable
that a pointer points to, as in:
 int *ptr;

 One reason for doing this is so that later, once ptr "points to" something, if we write:

 *ptr = 2;

the compiler will know how many bytes to copy into that memory location pointed to by
ptr. If ptr was defined as pointing to an integer, 2 bytes would be copied, if a long, 4
bytes would be copied. Similarly for floats and doubles the appropriate number
will be copied. But, defining the type that the pointer points to permits a number of other
interesting ways a compiler can interpret code. For example, consider a block in memory
consisting if ten integers in a row. That is, 20 bytes of memory are set aside to hold 10
integer.

 Now, let's say we point our integer pointer ptr at the first of these integers.
Furthermore lets say that integer is located at memory location 100 (decimal). What
happens when we write:

 ptr + 1;

 Because the compiler "knows" this is a pointer (i.e. its value is an address) and that it
points to an integer (its current address, 100, is the address of an integer), it adds 2 to
ptr instead of 1, so the pointer "points to" the _next_integer_, at memory location 102.
Similarly, were the ptr defined as a pointer to a long, it would add 4 to it instead of

1. The same goes for other data types such as floats, doubles, or even user defined
data types such as structures.

 Similarly, since ++ptr and ptr++ are both equivalent to

 ptr + 1

(though the point in the program when ptr is incremented may be different), incrementing
a pointer using the unary ++ operator, either pre- or post-, increments the address it stores
by the amount sizeof(type) (i.e. 2 for an integer, 4 for a long, etc.).

 Since a block of 10 integers located contiguously in memory is, by definition, an array
of integers, this brings up an interesting relationship between arrays and pointers.

 Consider the following:

 int my_array[] = {1,23,17,4,-5,100};

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Here we have an array containing 6 integers. We refer to each of these integers by
means of a subscript to my_array, i.e. using my_array[0] through my_array[5]. But, we
could alternatively access them via a pointer as follows:

 int *ptr;

 ptr = &my_array[0]; /* point our pointer at the first
 integer in our array * /

 And then we could print out our array either using the array notation or by
dereferencing our pointer. The following code illustrates this:
--
#include <stdio.h>

int my_array[] = {1,23,17,4,-5,100};
int *ptr;

int main(void)
{
 int i;
 ptr = &my_array[0]; /* point our pointer to the array * /
 printf("\n\n");
 for(i = 0; i < 6; i++)
 {
 printf("my_array[%d] = %d ",i,my_array[i]); /*<-- A * /
 printf("ptr + %d = %d\n",i, * (ptr + i)); /*<-- B * /
 }
 return 0;
}
--
 Compile and run the above program and carefully note lines A and B and that the
program prints out the same values in either case. Also note how we dereferenced our
pointer in line B, i.e. we first added i to it and then dereferenced the the new pointer.
Change line B to read:

 printf("ptr + %d = %d\n",i, *ptr++);

and run it again... then change it to:

 printf("ptr + %d = %d\n",i, * (++ptr));

and try once more. Each time try and predict the outcome and carefully look at the actual
outcome.

 In C, the standard states that wherever we might use &var_name[0] we can replace that
with var_name, thus in our code where we wrote:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 ptr = &my_array[0];

 we can write:

 ptr = my_array; to achieve the same result.

 This leads many texts to state that the name of an array is a pointer. While this is true,
I prefer to mentally think "the name of the array is a _constant_ pointer". Many
beginners(including myself when I was learning) forget that _constant_qualifier. In my
opinon this leads to some confusion. For example, while we can write ptr = my_array;
we cannot write

 my_array = ptr;

 The reason is that the while ptr is a variable, my_array is a constant. That is, the
location at which the first element of my_array will be stored cannot be changed once
my_array[] has been declared.

Modify the example program above by changing

 ptr = &my_array[0]; to ptr = my_array;

and run it again to verify the results are identical.

 Now, let's delve a little further into the difference between the names "ptr" and
"my_array" as used above. We said that my_array is a constant pointer. What do we
mean by that? Well, to understand the term "constant" in this sense, let's go back to
our definition of the term "variable". When we define a variable we set aside a spot in
memory to hold the value of the appropriate type. Once that is done the name of the
variable can be interpreted in one of two ways. When used on the left side of the
assignment operator, the compiler interprets it as the memory location to which to move
that which lies on the right side of the assignment operator. But, when used on the right
side of the assignment operator, the name of a variable is interpreted to mean the contents
stored at that memory address set aside to hold the value of that variable.

 With that in mind, let's now consider the simplest of constants, as in:

 int i, k;
 i = 2;

 Here, while "i" is a variable and then occupies space in the data portion of memory,
"2" is a constant and, as such, instead of setting aside memory in the data segment, it is
imbedded directly in the code segment of memory. That is, while writing something like
k = i; tells the compiler to create code which at run time will look at memory location & i

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

to determine the value to be moved to k, code created by i = 2; simply puts the '2' in the
code and there is no referencing of the data segment.

 Similarly, in the above, since "my_array" is a constant, once the compiler establishes
where the array itself is to be stored, it "knows" the address of my_array[0] and on
seeing:

 ptr = my_array;

it simply uses this address as a constant in the code segment and there is no referencing
of the data segment beyond that.

 Well, that's a lot of technical stuff to digest and I don't expect a beginner to understand
all of it on first reading. With time and experimentation you will want to come back and
re-read the first 2 chapters. But for now, let's move on to the relationship between
pointers, character arrays, and strings.

===
===

CHAPTER 3: Pointers and Str ings

 The study of strings is useful to further tie in the relationship between pointers and
arrays. It also makes it easy to illustrate how some of the standard C string functions can
be implemented. Finally it illustrates how and when pointers can and should be passed to
functions.

 In C, strings are arrays of characters. This is not necessarily true in other languages.
In Pascal or (most versions of) Basic, strings are treated differently from arrays. To start
off our discussion we will write some code which, while preferred for illustrative
purposes, you would probably never write in an actual program. Consider, for example:

 char my_string[40];

 my_string[0] = 'T';
 my_string[1] = 'e';
 my_string[2] = 'd':
 my_string[3] = '\0';

 While one would never build a string like this, the end result is a string in that it is an
array of characters _terminated_with_a_nul_character_. By definition, in C, a string
is an array of characters terminated with the nul character. Note that "nul" is _not_ the
same as "NULL". The nul refers to a zero as is defined by the escape sequence '\0'. That
is it occupies one byte of memory. The NULL, on the other hand, is the value of an
uninitialized pointer and pointers require more than one byte of storage. NULL is
defined in a header file in your C compiler, nul may not be #defined at all.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Since writing the above code would be very time consuming, C permits two alternate
ways of achieving the same thing. First, one might write:

 char my_string[40] = { 'T', 'e', 'd', '\0',} ;

 But this also takes more typing than is convenient. So, C permits:

 char my_string[40] = "Ted";

 When the double quotes are used, instead of the single quotes as was done in the
previous examples, the nul character ('\0') is automatically appended to the end of the
string.

 In all of the above cases, the same thing happens. The compiler sets aside an
contiguous block of memory 40 bytes long to hold characters and initialized it such that
the first 4 characters are Ted\0.

 Now, consider the following program:

------------------program 3.1-------------------------------------
#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes";
char strB[80];

int main(void)
{
 char *pA; /* a pointer to type character * /
 char *pB; /* another pointer to type character * /
 puts(strA); /* show string A * /
 pA = strA; /* point pA at string A * /
 puts(pA); /* show what pA is pointing to * /
 pB = strB; /* point pB at string B * /
 putchar('\n'); /* move down one line on the screen * /
 while(*pA != '\0') /* line A (see text) * /
 {
 *pB++ = *pA++; /* line B (see text) * /
 }
 pB = '\0'; / line C (see text) */
 puts(strB); /* show strB on screen * /
 return 0;
}
--------- end program 3.1 -------------------------------------

 In the above we start out by defining two character arrays of 80 characters each. Since
these are globally defined, they are initialized to all '\0's first. Then, strA has the first 42

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

characters initialized to the string in quotes.

 Now, moving into the code, we define two character pointers and show the string on
the screen. We then "point" the ponter pA at strA. That is, by means of the assignment
statement we copy the address of strA[0] into our variable pA. We now use puts() to
show that which is pointed to by pA on the screen. Consider here that the function
prototype for puts() is:

 int puts(const char *s);

 For the moment, ignore the "const". The parameter passed to puts is a pointer, that is
the _value_ of a pointer (since all parameters in C are passed by value), and the value of a
pointer is the address to which it points, or, simply, an address. Thus
when we write:

 puts(strA); as we have seen, we are passing the

address of strA[0]. Similarly, when we write:

 puts(pA); we are passing the same address, since

we have set pA = strA;

 Given that, follow the code down to the while() statement on line A. Line A states:

 While the character pointed to by pA (i.e. *pA) is not a null character (i.e. the
terminating '\0'), do the following:

 line B states: copy the character pointed to by pA to the space pointed to by pB, then
increment pA so it points to the next character and pB so it points to the next space.

 Note that when we have copied the last character, pA now points to the terminating nul
character and the loop ends. However, we have not copied the nul character. And, by
definition a string in C _must_ be nul terminated. So, we add the nul character with line
C.

 It is very educational to run this program with your debugger while watching strA,
strB, pA and pB and single stepping through the program. It is even more educational if
instead of simply defining strB[] as has been done above, initialize it also with something
like:

 strB[80] = "12345678901234567890123456789012345678901234567890"

where the number of digits used is greater than the length of strA and then repeat the
single stepping procedure while watching the above variables. Give these things a try!

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Of course, what the above program illustrates is a simple way of copying a string.
After playing with the above until you have a good understanding of what is happening,
we can proceed to creating our own replacement for the standard strcpy() that comes
with C. It might look like:

 char *my_strcpy(char *destination, char *source)
 {
 char *p = destination
 while (*source != '\0')
 {
 *p++ = *source++;
 }
 *p = '\0';
 return destination.
 }

 In this case, I have followed the practice used in the standard routine of returning a
pointer to the destination.

 Again, the function is designed to accept the values of two character pointers, i.e.
addresses, and thus in the previous program we could write:

int main(void)
{
 my_strcpy(strB, strA);
 puts(strB);
}

 I have deviated slightly from the form used in standard C which would have the
prototype:

 char *my_strcpy(char *destination, const char *source);

 Here the "const" modifier is used to assure the user that the function will not modify
the contents pointed to by the source pointer. You can prove this by modifying the
function above, and its prototype, to include the "const" modifier as shown. Then,
within the function you can add a statement which attempts to change the contents of that
which is pointed to by source, such as:

 *source = 'X';

which would normally change the first character of the string to an X. The const
modifier should cause your compiler to catch this as an error. Try it and see.

 Now, let's consider some of the things the above examples have shown us. First off,
consider the fact that *ptr++ is to be interpreted as returning the value pointed to by ptr

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

and then incrementing the pointer value. On the other hand, note that this has to do with
the precedence of the operators. Were we to write (*ptr)++ we would increment, not the
pointer, but that which the pointer points to! i.e. if used on the first character of the
above example string the 'T' would be incremented to a 'U'. You can write some simple
example code to illustrate this.

 Recall again that a string is nothing more than an array of characters. What we have
done above is deal with copying an array. It happens to be an array of characters but the
technique could be applied to an array of integers, doubles, etc. In those cases, however,
we would not be dealing with strings and hence the end of the array would not be
automatically marked with a special value like the nul character. We could implement
a version that relied on a special value to identify the end. For example, we could copy an
array of postive integers by marking the end with a negative integer. On the other hand,
it is more usual that when we write a function to copy an array of items other than strings
we pass the function the number of items to be copied as well as the address of the array,
e.g. something like the following prototype might indicate:

 void int_copy(int *ptrA, int *ptrB, int nbr);

where nbr is the number of integers to be copied. You might want to play with this idea
and create an array of integers and see if you can write the function int_copy() and make
it work. Note that this permits using functions to manipulate very large arrays. For
example, if we have an array of 5000 integers that we want to manipulate with a function,
we need only pass to that function the address of the array (and any auxiliary information
such as nbr above, depending on what we are doing). The array itself does _not_ get
passed, i.e. the whole array is not copied and put on the stack before calling the function,
only its address is sent.

 Note that this is different from passing, say an integer, to a function. When we pass an
integer we make a copy of the integer, i.e. get its value and put it on the stack. Within the
function any manipulation of the value passed can in no way effect the original integer.
But, with arrays and pointers we can pass the address of the variable and hence anipulate
the values of of the original variables.

===
===

CCCHHHAAAPPPTTTEEERRR 444::: MMM ooorrr eee ooonnn SSSttt rrr iiinnngggsss
 Well, we have progressed quite aways in a short time! Let's back up a little and look at
what was done in Chapter 3 on copying of strings but in a different light. Consider the
following function:

 char *my_strcpy(char dest[], char source[])
 {
 int i = 0;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 while (source[i] != '\0')
 {
 dest[i] = source[i];
 i++;
 }
 dest[i] = '\0';
 return dest;
 }

 Recall that strings are arrays of characters. Here we have chosen to use array notation
instead of pointer notation to do the actual copying. The results are the same, i.e. the
string gets copied using this notation just as accurately as it did before. This raises some
interesting points which we will discuss.

 Since parameters are passed by value, in both the passing of a character pointer or the
name of the array as above, what actually gets passed is the address of the first element of
each array. Thus, the numerical value of the parameter passed is the same whether we
use a character pointer or an array name as a parameter. This would tend to imply that
somehow:

 source[i] is the same as * (p+i);

In fact, this is true, i.e wherever one writes a[i] it can be replaced with * (a + i) without
any problems. In fact, the compiler will create the same code in either case.
Now,looking
at this last expression, part of it.. (a + i) is a simple addition using the + operator and the
rules of c state that such an expression is commutative. That is (a + i) is identical to
(i + a). Thus we could write * (i + a) just as easily as * (a + i).

 But *(i + a) could have come from i[a] ! From all of this comes the curious truth that
if:

 char a[20];
 int i;

 writing a[3] = 'x'; is the same as writing

 3[a] = 'x';

 Try it! Set up an array of characters, integers or longs,
etc. and assigned the 3rd or 4th element a value using the conventional approach and then
print out that value to be sure you have that working. Then reverse the array notation as I
have done above. A good compiler will not balk and the results will be identical. A
curiosity... nothing more!

 Now, looking at our function above, when we write:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 dest[i] = source[i];

 this gets interpreted by C to read:

 * (dest + i) = * (source + i);

 But, this takes 2 additions for each value taken on by i. Additions, generally speaking,
take more time than incrementations (such as those done using the ++ operator as in i++).
This may not be true in modern optimizing compilers, but one can never be sure. Thus,
the pointer version may be a bit faster than the array version.

 Another way to speed up the pointer version would be to change:

 while (*source != '\0') to simply while (*source)

since the value within the parenthesis will go to zero (FALSE) at the same time in either
case.

 At this point you might want to experiment a bit with writing some of your own
programs using pointers. Manipulating strings is a good place to experiment. You
might want to write your own versions of such standard functions as:

 strlen();
 strcat();
 strchr();

and any others you might have on your system.

 We will come back to strings and their manipulation through pointers in a future
chapter. For now, let's move on and discuss structures for a bit.

===
===

CCCHHHAAAPPPTTTEEERRR 555::: PPPoooiiinnnttteeerrr sss aaannnddd SSSttt rrr uuuccctttuuurrr eeesss
 As you may know, we can declare the form of a block of data containing different data
types by means of a structure declaration. For example, a personnel file might contain
structures which look something like:

 struct tag{
 char lname[20]; /* last name * /
 char fname[20]; /* first name * /
 int age; /* age * /
 float rate; /* e.g. 12.75 per hour * /
 } ;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Let's say we have an bunch of these structures in a disk file and we want to read each
one out and print out the first and last name of each one so that we can have a list of the
people in our files. The remaining information will not be printed out. We will want to
do this printing with a function call and pass to that function a pointer to the structure at
hand. For demonstration purposes I will use only one structure for now. But realize the
goal is the writing of the function, not the reading of the file which, presumably, we
know how to do.

 For review, recall that we can access structure members with the dot operator as in:

--------------- program 5.1 ------------------
#include <stdio.h>
#include <string.h>

struct tag{
 char lname[20]; /* last name * /
 char fname[20]; /* first name * /
 int age; /* age * /
 float rate; /* e.g. 12.75 per hour * /
 } ;

struct tag my_struct; /* declare the structure m_struct * /

int main(void)
{
 strcpy(my_struct.lname,"Jensen");
 strcpy(my_struct.fname,"Ted");
 printf("\n%s ",my_struct.fname);
 printf("%s\n",my_struct.lname);
 return 0;
}
-------------- end of program 5.1 --------------

 Now, this particular structure is rather small compared to many used in C programs.
To the above we might want to add:

 date_of_hire;
 date_of_last_raise;
 last_percent_increase;
 emergency_phone;
 medical_plan;
 Social_S_Nbr;
 etc.....

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Now, if we have a large number of employees, what we want to do manipulate the data
in these structures by means of functions. For example we might want a function print out
the name of any structure passed to it. However, in the original C (Kernighan & Ritchie)
it was not possible to pass a structure, only a pointer to a structure could be passed. In
ANSI C, it is now permissible to pass the complete structure. But, since our goal here is
to learn more about pointers, we won't pursue that.

 Anyway, if we pass the whole structure it means there must be enough room on the
stack to hold it. With large structures this could prove to be a problem. However,
passing a pointer uses a minimum amount of stack space.

 In any case, since this is a discussion of pointers, we will discuss how we go about
passing a pointer to a structure and then using it within the function.

 Consider the case described, i.e. we want a function that will accept as a parameter a
pointer to a structure and from within that function we want to access members of the
structure.

For example we want to print out the name of the employee in our example structure.

 Okay, so we know that our pointer is going to point to a structure declared using struct
tag. We define such a pointer with the definition:

 struct tag *st_ptr;

and we point it to our example structure with:

 st_ptr = &my_struct;

 Now, we can access a given member by de-referencing the pointer. But, how do we de-
reference the pointer to a structure?

Well, consider the fact that we might want to use the pointer to set the age of the
employee. We would write:

 (*st_ptr).age = 63;

 Look at this carefully. It says, replace that within the parenthesis with that which
st_ptr points to, which is the structure my_struct. Thus, this breaks down to the same as
my_struct.age.

 However, this is a fairly often used expression and the designers of C have created an
alternate syntax with the same meaning which is:

 st_ptr->age = 63;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 With that in mind, look at the following program:

------------ program 5.2 --------------

#include <stdio.h>
#include <string.h>

struct tag{ /* the structure type * /
 char lname[20]; /* last name * /
 char fname[20]; /* first name * /
 int age; /* age * /
 float rate; /* e.g. 12.75 per hour * /
 } ;

struct tag my_struct; /* define the structure * /

void show_name(struct tag *p); /* function prototype * /

int main(void)
{
 struct tag *st_ptr; /* a pointer to a structure * /
 st_ptr = &my_struct; /* point the pointer to my_struct * /
 strcpy(my_struct.lname,"Jensen");
 strcpy(my_struct.fname,"Ted");
 printf("\n%s ",my_struct.fname);
 printf("%s\n",my_struct.lname);
 my_struct.age = 63;
 show_name(st_ptr); /* pass the pointer * /
 return 0;
}

void show_name(struct tag *p)
{
 printf("\n%s ", p->fname); /* p points to a structure * /
 printf("%s ", p->lname);
 printf("%d\n", p->age);
}
-------------------- end of program 5.2 ----------------

 Again, this is a lot of information to absorb at one time.
The reader should compile and run the various code snippets and using a debugger
monitor things like my_struct and p while single stepping through the main and following
the code down into the function to see what is happening.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

===
===

CCCHHHAAAPPPTTTEEERRR 666::: SSSooommmeee mmmooorrr eee ooonnn SSStttrrr iiinnngggsss,,, aaannnddd
AAArrr rrr aaayyysss ooofff SSStttrrr iiinnngggsss
 Well, let's go back to strings for a bit. In the following all assignments are to be
understood as being global, i.e. made outside of any function, including main.

 We pointed out in an earlier chapter that we could write:

 char my_string[40] = "Ted";

which would allocate space for a 40 byte array and put the string in the first 4 bytes (three
for the characters in the quotes and a 4th to handle the terminating '\0'.

 Actually, if all we wanted to do was store the name "Ted" we could write:

 char my_name[] = "Ted";

and the compiler would count the characters, leave room for the nul character and store
the total of the four characters in memory the location of which would be returned by the
array name, in this case my_string.

 In some code, instead of the above, you might see:

 char *my_name = "Ted";

which is an alternate approach. Is there a difference between these? The answer is.. yes.
Using the array notation 4 bytes of storage in the static memory block are taken up, one
for each character and one for the nul character. But, in the pointer notation the same 4
bytes required, _plus_ N bytes to store the pointer variable my_name (where N depends
on the system but is usually a minimum of 2 bytes and can be 4 or more).

 In the array notation, my_name is a constant (not a variable). In the pointer notation
my_name is a variable. As to which is the _better_ method, that depends on what you are
going to do within the rest of the program.

 Let's now go one step further and consider what happens if each of these definitions
are done within a function as opposed to globally outside the bounds of any function.

void my_function_A(char *ptr)
{
 char a[] = "ABCDE";
 .
 .

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}

void my_function_B(char *ptr)
{
 char *cp = "ABCDE";
 .
 .
}

 Here we are dealing with automatic variables in both cases. In my_function_A the
automatic variable is the character array a[]. In my_function_B it is the pointer cp. While
C is designed in such a way that a stack is not required on those processors which don't
use them, my particular processor (80286) has a stack. I wrote a simple program
incorporating functions similar to those above and found that in my_function_A the 5
characters in the string were all stored on the stack. On the other hand, in y_function_B,
the 5 characters were stored in the data space and the pointer was stored on the stack.

 By making a[] static I could force the compiler to place the 5 characters in the data
space as opposed to the stack. I did this exercise to point out just one more difference
between dealing with arrays and dealing with pointers. By the way, array initialization of
automatic variables as I have done in my_function_A was illegal in the older K&R C and
only "came of age" in the newer ANSI C. A fact that may be important when one is
considering portabilty and backwards compatability.

 As long as we are discussing the relationship/differences between pointers and arrays,
let's move on to multi-dimensional arrays. Consider, for example the array:

 char multi[5][10];

 Just what does this mean? Well, let's consider it in the following light.

 char multi[5][10];
 ^^^^^^^^^^^^^

 If we take the first, underlined, part above and consider it to be a variable in its own
right, we have an array of 10 characters with the "name" multi[5]. But this name, in
itself, implies an array of 5 somethings. In fact, it means an array of five 10 character
arrays. Hence we have an array of arrays. In memory we might think of this as looking
like:

 multi[0] = "0123456789"
 multi[1] = "abcdefghij"
 multi[2] = "ABCDEFGHIJ"
 multi[3] = "9876543210"
 multi[4] = "JIHGFEDCBA"

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

with individual elements being, for example:

 multi[0][3] = '3'
 multi[1][7] = 'h'
 multi[4][0] = 'J'

 Since arrays are to be contiguous, our actual memory block for the above should look
like:

 "0123456789abcdefghijABCDEFGHIJ9876543210JIHGFEDCBA"

 Now, the compiler knows how many columns are present in the array so it can
interpret multi + 1 as the address of the 'a' in the 2nd row above. That is, it adds 10, the
number of columns, to get this location. If we were dealing with integers and an array
with the same dimension the compiler would add 10*sizeof(int) which, on my machine,
would be 20. Thus, the address of the "9" in the 4th row above would be &multi[3][0] or
* (multi + 3) in pointer notation. To get to the content of the 2nd element in row 3 we add
1 to this address and dereference the result as in

 * (*(multi + 3) + 1)

 With a little thought we can see that:

 * (*(multi + row) + col) and
 multi[row][col] yield the same results.

 The following program illustrates this using integer arrays
instead of character arrays.

------------------- program 6.1 ----------------------
#include <stdio.h>

#define ROWS 5
#define COLS 10

int multi[ROWS][COLS];

int main(void)
{
 int row, col;
 for (row = 0; row < ROWS; row++)
 for(col = 0; col < COLS; col++)
 multi[row][col] = row*col;
 for (row = 0; row < ROWS; row++)
 for(col = 0; col < COLS; col++)
 {

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 printf("\n%d ",multi[row][col]);
 printf("%d ",* (* (multi + row) + col));
 }
 return 0;
}
----------------- end of program 6.1 ---------------------

 Because of the double de-referencing required in the pointer version, the name of a 2
dimensional array is said to be a pointer to a pointer. With a three dimensional array we
would be dealing with an array of arrays of arrays and a pointer to a pointer to a pointer.
Note, however, that here we have initially set aside the block of memory for the array by
defining it using array notation. Hence, we are dealing with an constant, not a variable.
That is we are talking about a fixed pointer not a
variable pointer. The dereferencing function used above permits us to access any element
in the array of arrays without the need of changing the value of that pointer (the address
of multi[0][0]
as given by the symbol "multi").

EPILOG:

 I have written the preceding material to provide an introduction to pointers for
newcomers to C. In C, the more one understands about pointers the greater flexibility
one has in the writing of code. The above has just scratched the surface of the subject. In
time I hope to expand on this material. Therefore, if you have questions, comments,
criticisms, etc. concerning that which has been presented, I would greatly appreciate your
contacting me using one of the mail addresses cited in the
Introduction.

Q: Okay, I'm kinda new to C, and I was reading that this following example

 Q: would not be good to do: main() {

 Q: int * iptr;

 Q: * iptr = 421;

 Q: printf("* iptr = %d\n",* iptr);

 Q: }

 Q: It was saying that you could get away with it, but in larger programs it

 Q: can be a serious problem. It says that it is an uninitialized pointer.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 A: Contrary to what they (the book) told you, you CANNOT get away with

 uninitialized pointers, period.

 Q: How do you initialize pointers?

 A: Some insights:

1. A variable, any variable, has, amoing others, two properties called the

 rvalue and the lvalue. 'l' and 'r' stand for 'left' and 'right'. What is

 the meaning of these properties. Consider assignment:

 int l = 2;

 int r = 3;

 l = r; <----

 Conceptually speaking, what basiccaly happens is that the compiler takes

 the address of 'r' and retrieves the value stored at that address. To

 obtain the address, it uses the rvalue of 'r'. Now it is clear that

 rvalues are used at the right hand side of the assignment operator to

 obtain the address to use.

 Then, the value retrieved from 'r' is put in the lvalue of 'l', then,

 'l'-s rvalue is used to obtain the address where to store that value.

 Definitions:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 rvalue the attribute of a variable that holds the address where

 that particular variable is stored.

 lvalue the attribute of a variable that holds the value of the

 variable.

 Conclusions:

 - If you never assign a value to a variables lvalue, that lvalue is

 undefined!

 - The effect of using undefined lvalues is undefined, possibly

 harmful, and sometimes interesting ;-)

 - A variable is a tuple(address, value). See "Aside".

 - Assigning to rvalues is the job of the compiler.

 - Assigning to lvalues is the job of the programmer.

 Aside:

 In fact, a variable is tuple(storage, scope, type, address, value):

 storage : where is it stored, for example data, stack, heap...

 scope : who can see us, for example global, local...

 type : what is our type, for example int, int* ...

 address : where are we located

 value : what is our value

2. A pointer is not a second class citizen. It has exactly the same proper-

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 ties as any other variable. The fun thing is that a pointers lvalue is

 actually the rvalue of another variable, namely the variable it points

 to. That means that before we can use that lvalue, we first must assign

 a correct value to it, because if we do not, that lvalue is undefined.

 That is where the referencing operator '& '. comes into play. Consider:

 int v = 3;

 int* p;

 p = &v; <----

 What the &-operator does is a modification of what happens at the left

 side of the assignment. Basically it tells the compiler not to use 'v'-s

 rvalue to obtain the address where the lvalue of 'v' is stored, but it

 tells it to use the rvalue of 'v' as the right hand side of the

 assignment. It then proceeds as normal, assigning the value obtained to

 the lvalue of p and storing that at the address contained in the rvalue

 of p.

 What we have now is a p with an rvalue that is equal to the address where

 p is stored, and an lvalue that is equal to the address where 'v' is

 stored. Bingo! We initialized a pointer.

 Conclusion:

 - The meaning of the symbol '& ' in the context of a variable is

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 "take-the-address-instead-of-the-value"

3. Now, all we need is a method to obtain the lvalue of 'v' through the

 pointer p. That is where dereferencing operator '* ' comes into play.

 Consider:

 int n;

 int v = 3;

 int* p = &v;

 n = *p; <----

 Now what happens, is that the * -operator tells the compiler to use the

 lvalue of p to use as an rvalue to obtain the proper lvalue. What happens

 exactly is:

 - Take the rvalue of p.

 - Obtain the lvalue of p.

 - Use the lvalue of p as an rvalue to obtain the lvalue of the

 variable pointed to.

 We call this process "dereferencing", that is, the pointer refers to

 another variable (possibly another pointer) and we follow that reference

 to arrive at the place we want to be.

 Conclusion:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 - The meaning of the symbol '* ' in the context of pointers is

 "use-my-value-as-address".

Well, the answer is there. To intialize a pointer, we must point it to

another variable by means of the &-operator. To obtain the value of the

variable pointed to, we use the * -operator. However, keep in mind that

operators & and * can have a different meaning in other contexts (notably

bitwise AND and multiplication).

 TABLE OF CONTENTS

 Preface

 Introduction

 Chapter 1: What is a Pointer?

 Chapter 2: Pointer Types and Arrays.

 Chapter 3: Pointers and Strings

 Chapter 4: More on Strings

 Chapter 5: Pointers and Structures

 Chapter 6: More on Strings and Arrays of Strings

 Chapter 7: More on Multi-Dimensional Arrays

 Chapter 8: Pointers to Arrays

 Chapter 9: Pointers and Dynamic Allocation of Memory

 Chapter 10: Pointers to Functions

 Epilog

->==
PREFACE

 This document is intended to introduce pointers to beginning
programmers in the C programming language. Over several years of
reading and contributing to various conferences on C including
those on the FidoNet and UseNet, I have noted a large number of
newcomers to C appear to have a difficult time in grasping the
fundamentals of pointers. I therefore undertook the task of

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

trying to explain them in plain language with lots of examples.

 The first version of this document was placed in the public
domain, as is this one. It was picked up by Bob Stout who
included it as a file called PTR-HELP.TXT in his widely
distributed collection of SNIPPETS. Since that release, I have
added a significant amount of material and made some minor
corrections in the original work.

Acknowledgements:

 There are so many people who have unknowingly contributed to
this work because of the questions they have posed in the FidoNet
C Echo, or the UseNet Newsgroup comp.lang.c, or several other
conferences in other networks, that it would be impossible to
list them all. Special thanks go to Bob Stout who was kind
enough to include the first version of this material in his
SNIPPETS file.

About the Author:

 Ted Jensen is a retired Electronics Engineer who worked as a
hardware designer or manager of hardware designers in the field
of magnetic recording. Programming has been a hobby of his off
and on since 1968 when he learned how to keypunch cards for
submission to be run on a mainframe. (The mainframe had 64K of
magnetic core memory!).

Use of this Material:

 Everything contained herein is hereby released to the Public
Domain. Any person may copy or distribute this material in any
manner they wish. The only thing I ask is that if this material
is used as a teaching aid in a class, I would appreciate it if it
were distributed in its entirety, i.e. including all chapters,
the preface and the introduction. I would also appreciate it if
under such circumstances the instructor of such a class would
drop me a note at one of the addresses below informing me of
this. I have written this with the hope that it will be useful
to others and since I'm not asking any financial remuneration,
the only way I know that I have at least partially reached that
goal is via feedback from those how find this material useful.

 By the way, you needn't be an instructor or teacher to
contact me. I would appreciate a note from _anyone_ who finds
the material useful, or who has constructive criticism to offer.
I'm also willing to answer questions submitted by mail.

Ted Jensen tjensen@netcom.com
P.O. Box 324 1-415-365-8452
Redwood City, CA 94064
Dec. 1995

->==
INTRODUCTION

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 If one is to be proficient in the writing of code in the C
programming language, one must have a thorough working knowledge
of how to use pointers. Unfortunately, C pointers appear to
represent a stumbling block to newcomers, particularly those
coming from other computer languages such as Fortran, Pascal or
Basic.

 To aid those newcomers in the understanding of pointers I have
written the following material. To get the maximum benefit from
this material, I feel it is important that the user be able to
run the code in the various listings contained in the article. I
have attempted, therefore, to keep all code ANSI compliant so
that it will work with any ANSI compliant compiler. And I have
tried to carefully block the code within the text so that with
the help of an ASCII text editor one can copy a given block of
code to a new file and compile it on their system. I recommend
that readers do this as it will help in understanding the
material.

->==
CHAPTER 1: What is a pointer?

 One of the things beginners in C find most difficult to
understand is the concept of pointers. The purpose of this
document is to provide an introduction to pointers and their use
to these beginners.

 I have found that often the main reason beginners have a
problem with pointers is that they have a weak or minimal feeling
for variables, (as they are used in C). Thus we start with a
discussion of C variables in general.

 A variable in a program is something with a name, the value
of which can vary. The way the compiler and linker handles this
is that it assigns a specific block of memory within the computer
to hold the value of that variable. The size of that block
depends on the range over which the variable is allowed to vary.
For example, on PC's the size of an integer variable is 2 bytes,
and that of a long integer is 4 bytes. In C the size of a
variable type such as an integer need not be the same on all
types of machines.

 When we declare a variable we inform the compiler of two
things, the name of the variable and the type of the variable.
For example, we declare a variable of type integer with the name
k by writing:

 int k;

 On seeing the "int" part of this statement the compiler sets
aside 2 bytes (on a PC) of memory to hold the value of the
integer. It also sets up a symbol table. And in that table it
adds the symbol k and the relative address in memory where those
2 bytes were set aside.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Thus, later if we write:

 k = 2;

at run time we expect that the value 2 will be placed in that
memory location reserved for the storage of the value of k. In C
we refer to a variable such as the integer k as an "object".

 In a sense there are two "values" associated with the object
k, one being the value of the integer stored there (2 in the
above example) and the other being the "value" of the memory
location where it is stored, i.e. the address of k. Some texts
refer to these two values with the nomenclature rvalue (right
value, pronounced "are value") and lvalue (left value, pronounced
"el value") respectively.

 In some languages, the lvalue is the value permitted on the
left side of the assignment operator '=' (i.e. the address where
the result of evaluation of the right side ends up). The rvalue
is that which is on the right side of the assignment statement,
the '2' above. Rvalues cannot be used on the left side
of the assignment statement. Thus: 2 = k; is illegal.

 Actually, the above definition of "lvalue" is somewhat
modified for C. According to K&R-2 (page 197): [1]

 "An _object_ is a named region of storage; an _lvalue_ is an
 expression referring to an object."

However, at this point, the definition originally cited above is
sufficient. As we become more familiar with pointers we will go
into more detail on this.

 Okay, now consider:

 int j, k;
 k = 2;
 j = 7; <-- line 1
 k = j; <-- line 2

 In the above, the compiler interprets the j in line 1 as the
address of the variable j (its lvalue) and creates code to copy
the value 7 to that address. In line 2, however, the j is
interpreted as its rvalue (since it is on the right hand side of
the assignment operator '='). That is, here the j refers to the
value _stored_ at the memory location set aside for j, in this
case 7. So, the 7 is copied to the address designated by the
lvalue of k.

 In all of these examples, we are using 2 byte integers so all
copying of rvalues from one storage location to the other is done
by copying 2 bytes. Had we been using long integers, we would be
copying 4 bytes.

 Now, let's say that we have a reason for wanting a variable

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

designed to hold an lvalue (an address). The size required to
hold such a value depends on the system. On older desk top
computers with 64K of memory total, the address of any point in
memory can be contained in 2 bytes. Computers with more memory
would require more bytes to hold an address. Some computers,
such as the IBM PC might require special handling to hold a
segment and offset under certain circumstances. The actual size
required is not too important so long as we have a way of
informing the compiler that what we want to store is an address.

 Such a variable is called a "pointer variable" (for reasons
which hopefully will become clearer a little later). In C when
we define a pointer variable we do so by preceding its name with
an asterisk. In C we also give our pointer a type which, in this
case, refers to the type of data stored at the address we will be
storing in our pointer. For example, consider the variable
declaration:

 int *ptr;

 ptr is the _name_ of our variable (just as 'k' was the name
of our integer variable). The '* ' informs the compiler that we
want a pointer variable, i.e. to set aside however many bytes is
required to store an address in memory. The "int" says that we
intend to use our pointer variable to store the address of an
integer. Such a pointer is said to "point to" an integer.
However, note that when we wrote "int k;" we did not give k a value.
If this definition was made outside of any function many compilers
will initialize it to zero. Similarly, ptr has no value, that is
we haven't stored an address in it in the above declaration. In
this case, again if the declaration is outside of any function,
it is initialized to a value #defined by your compiler as NULL. It
is called a NULL pointer. While in most cases NULL is #defined
as zero, it need not be. That is, different compilers handle
this differently. Also while zero is an integer, NULL
need not be. However, the value that NULL actually has
internally is of little consequence to the programmer since at
the source code level NULL == 0 is guaranteed to evaluate to
true regardless of the internal value of NULL.

 But, back to using our new variable ptr. Suppose now that we
want to store in ptr the address of our integer variable k. To
do this we use the unary '&' operator and write:

 ptr = &k;

 What the '&' operator does is retrieve the lvalue (address)
of k, even though k is on the right hand side of the assignment
operator '=', and copies that to the contents of our pointer ptr.
Now, ptr is said to "point to" k. Bear with us now, there is
only one more operator we need to discuss.

 The "dereferencing operator" is the asterisk and it is used
as follows:

 *ptr = 7;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

will copy 7 to the address pointed to by ptr. Thus if ptr
"points to" (contains the address of) k, the above statement will
set the value of k to 7. That is, when we use the '* ' this way
we are referring to the value of that which ptr is pointing
to, not the value of the pointer itself.

 Similarly, we could write:

 printf("%d\n",*ptr);

to print to the screen the integer value stored at the address
pointed to by "ptr".

 One way to see how all this stuff fits together would be to
run the following program and then review the code and the output
carefully.

#include <stdio.h>

int j, k;
int *ptr;

int main(void)
{
 j = 1;
 k = 2;
 ptr = &k;
 printf("\n");
 printf("j has the value %d and is stored at %p\n",j,&j);
 printf("k has the value %d and is stored at %p\n",k,&k);
 printf("ptr has the value %p and is stored at %p\n",ptr,&ptr);
 printf("The value of the integer pointed to by ptr is %d\n",
 *ptr);
 return 0;
}

To review:

 A variable is declared by giving it a type and a name (e.g.
 int k;)

 A pointer variable is declared by giving it a type and a name
 (e.g. int *ptr) where the asterisk tells the compiler that
 the variable named ptr is a pointer variable and the type
 tells the compiler what type the pointer is to point to
 (integer in this case).

 Once a variable is declared, we can get its address by
 preceding its name with the unary '&' operator, as in &k.

 We can "dereference" a pointer, i.e. refer to the value of
 that which it points to, by using the unary '* ' operator as
 in *ptr.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 An "lvalue" of a variable is the value of its address, i.e.
 where it is stored in memory. The "rvalue" of a variable is
 the value stored in that variable (at that address).

References in Chapter 1:

 [1] "The C Programming Language" 2nd Edition
 B. Kernighan and D. Ritchie
 Prentice Hall
 ISBN 0-13-110362-8

->==
CHAPTER 2: Pointer types and Arrays

 Okay, let's move on. Let us consider why we need to identify
the "type" of variable that a pointer points to, as in:

 int *ptr;

 One reason for doing this is so that later, once ptr "points
to" something, if we write:

 *ptr = 2;

the compiler will know how many bytes to copy into that memory
location pointed to by ptr. If ptr was declared as pointing to an
integer, 2 bytes would be copied, if a long, 4 bytes would be
copied. Similarly for floats and doubles the appropriate number
will be copied. But, defining the type that the pointer points
to permits a number of other interesting ways a compiler can
interpret code. For example, consider a block in memory
consisting if ten integers in a row. That is, 20 bytes of memory
are set aside to hold 10 integers.

 Now, let's say we point our integer pointer ptr at the first
of these integers. Furthermore lets say that integer is located
at memory location 100 (decimal). What happens when we write:

 ptr + 1;

 Because the compiler "knows" this is a pointer (i.e. its
value is an address) and that it points to an integer (its
current address, 100, is the address of an integer), it adds 2 to
ptr instead of 1, so the pointer "points to" the _next_
integer, at memory location 102. Similarly, were the ptr
declared as a pointer to a long, it would add 4 to it instead of
1. The same goes for other data types such as floats, doubles,
or even user defined data types such as structures. This is
obviously not the same kind of "addition" that we normally think
of. In C it is referred to as addition using "pointer
arithmetic", a term which we will come back to later.

 Similarly, since ++ptr and ptr++ are both equivalent to
ptr + 1 (though the point in the program when ptr is incremented
may be different), incrementing a pointer using the unary ++

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

operator, either pre- or post-, increments the address it stores
by the amount sizeof(type) where "type" is the type of the object
pointed to. (i.e. 2 for an integer, 4 for a long,
etc.).

 Since a block of 10 integers located contiguously in memory
is, by definition, an array of integers, this brings up an
interesting relationship between arrays and pointers.

 Consider the following:

 int my_array[] = { 1,23,17,4,-5,100} ;

 Here we have an array containing 6 integers. We refer to
each of these integers by means of a subscript to my_array, i.e.
using my_array[0] through my_array[5]. But, we could
alternatively access them via a pointer as follows:

 int *ptr;

 ptr = &my_array[0]; /* point our pointer at the first
 integer in our array * /

 And then we could print out our array either using the array
notation or by dereferencing our pointer. The following code
illustrates this:
--
#include <stdio.h>

int my_array[] = { 1,23,17,4,-5,100} ;
int *ptr;

int main(void)
{
 int i;
 ptr = &my_array[0]; /* point our pointer to the first
 element of the array * /
 printf("\n\n");
 for(i = 0; i < 6; i++)
 {
 printf("my_array[%d] = %d ",i,my_array[i]); /*<-- A * /
 printf("ptr + %d = %d\n",i, * (ptr + i)); /*<-- B */
 }
 return 0;
}
--
 Compile and run the above program and carefully note lines A
and B and that the program prints out the same values in either
case. Also observe how we dereferenced our pointer in line B,
i.e. we first added i to it and then dereferenced the new
pointer. Change line B to read:

 printf("ptr + %d = %d\n",i, *ptr++);

and run it again... then change it to:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 printf("ptr + %d = %d\n",i, *(++ptr));

and try once more. Each time try and predict the outcome and
carefully look at the actual outcome.

 In C, the standard states that wherever we might use
&var_name[0] we can replace that with var_name, thus in our code
where we wrote:

 ptr = &my_array[0];

 we can write:

 ptr = my_array; to achieve the same result.

 This leads many texts to state that the name of an array is a
pointer. While this is true, I prefer to mentally think "the
name of the array is the address of first element in the array".
Many beginners (including myself when I was learning) have a
tendency to become confused by thinking of it as a pointer.
For example, while we can write ptr = my_array; we cannot write

 my_array = ptr;

 The reason is that the while ptr is a variable, my_array is a
constant. That is, the location at which the first element of
my_array will be stored cannot be changed once my_array[] has
been declared.

 Earlier when discussing the term "lvalue" I cited K&R-2 where
it stated:

 "An _object_ is a named region of storage; an _lvalue_ is an
 expression referring to an object".

This raises an interesting problem. Since my_array is a named
region of storage, why is "my_array" in the above assignment
statement not an lvalue? To resolve this problem, some refer to
"my_array" as an "unmodifiable lvalue".

Modify the example program above by changing

 ptr = &my_array[0]; to ptr = my_array;

and run it again to verify the results are identical.

 Now, let's delve a little further into the difference between
the names "ptr" and "my_array" as used above. Some writers will
refer to an array's name as a _constant_ pointer. What do we
mean by that? Well, to understand the term "constant" in this
sense, let's go back to our definition of the term "variable".
When we declare a variable we set aside a spot in memory to hold
the value of the appropriate type. Once that is done the name of
the variable can be interpreted in one of two ways. When used on
the left side of the assignment operator, the compiler interprets
it as the memory location to which to move that value resulting

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

from evaluation of the right side of the assignment operator.
But, when used on the right side of the assignment operator, the
name of a variable is interpreted to mean the contents stored at
that memory address set aside to hold the value of that variable.

 With that in mind, let's now consider the simplest of
constants, as in:

 int i, k;
 i = 2;

 Here, while "i" is a variable and then occupies space in the
data portion of memory, "2" is a constant and, as such, instead
of setting aside memory in the data segment, it is imbedded
directly in the code segment of memory. That is, while writing
something like k = i; tells the compiler to create code which at
run time will look at memory location &i to determine the value
to be moved to k, code created by i = 2; simply puts the '2' in
the code and there is no referencing of the data segment. That
is, both k and i are objects, but 2 is not an object.

 Similarly, in the above, since "my_array" is a constant, once
the compiler establishes where the array itself is to be stored,
it "knows" the address of my_array[0] and on seeing:

 ptr = my_array;

it simply uses this address as a constant in the code segment and
there is no referencing of the data segment beyond that.

 Well, that's a lot of technical stuff to digest and I don't
expect a beginner to understand all of it on first reading. With
time and experimentation you will want to come back and re-read
the first 2 chapters. But for now, let's move on to the
relationship between pointers, character arrays, and strings.

->==
CHAPTER 3: Pointers and Strings

 The study of strings is useful to further tie in the
relationship between pointers and arrays. It also makes it easy
to illustrate how some of the standard C string functions can be
implemented. Finally it illustrates how and when pointers can and
should be passed to functions.

 In C, strings are arrays of characters. This is not
necessarily true in other languages. In BASIC, Pascal, Fortran
and various other languages, a string has its own data type. But
in C it does not. In C a string is an array of characters
terminated with a binary zero character (written as '\0'). To
start off our discussion we will write some code which, while
preferred for illustrative purposes, you would probably never
write in an actual program. Consider, for example:

 char my_string[40];

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 my_string[0] = 'T';
 my_string[1] = 'e';
 my_string[2] = 'd':
 my_string[3] = '\0';

 While one would never build a string like this, the end
result is a string in that it is an array of characters
_terminated_with_a_nul_character_. By definition, in C, a string
is an array of characters terminated with the nul character. Be
aware that "nul" is _not_ the same as "NULL". The nul refers to a zero
as is defined by the escape sequence '\0'. That is it occupies
one byte of memory. The NULL, on the other hand, is the value of
an uninitialized pointer and pointers require more than one byte
of storage. NULL is #defined in a header file in your C
compiler, nul may not be #defined at all.

 Since writing the above code would be very time consuming, C
permits two alternate ways of achieving the same thing. First,
one might write:

 char my_string[40] = { 'T', 'e', 'd', '\0',} ;

 But this also takes more typing than is convenient. So, C
permits:

 char my_string[40] = "Ted";

 When the double quotes are used, instead of the single quotes
as was done in the previous examples, the nul character ('\0')
is automatically appended to the end of the string.

 In all of the above cases, the same thing happens. The
compiler sets aside an contiguous block of memory 40 bytes long
to hold characters and initialized it such that the first 4
characters are Ted\0.

 Now, consider the following program:

------------------program 3.1-------------------------------------
#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes";
char strB[80];

int main(void)
{
 char *pA; /* a pointer to type character */
 char *pB; /* another pointer to type character */
 puts(strA); /* show string A */
 pA = strA; /* point pA at string A */
 puts(pA); /* show what pA is pointing to * /
 pB = strB; /* point pB at string B */
 putchar('\n'); /* move down one line on the screen * /
 while(*pA != '\0') /* line A (see text) * /
 {
 *pB++ = *pA++; /* line B (see text) * /

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 }
 pB = '\0'; / line C (see text) * /
 puts(strB); /* show strB on screen * /
 return 0;
}
--------- end program 3.1 -------------------------------------

 In the above we start out by defining two character arrays of
80 characters each. Since these are globally defined, they are
initialized to all '\0's first. Then, strA has the first 42
characters initialized to the string in quotes.

 Now, moving into the code, we declare two character pointers
and show the string on the screen. We then "point" the pointer pA
at strA. That is, by means of the assignment statement we copy
the address of strA[0] into our variable pA. We now use puts()
to show that which is pointed to by pA on the screen. Consider
here that the function prototype for puts() is:

 int puts(const char *s);

 For the moment, ignore the "const". The parameter passed to
puts is a pointer, that is the _value_ of a pointer (since all
parameters in C are passed by value), and the value of a pointer
is the address to which it points, or, simply, an address. Thus
when we write:

 puts(strA); as we have seen, we are passing the

address of strA[0]. Similarly, when we write:

 puts(pA); we are passing the same address, since

we have set pA = strA;

 Given that, follow the code down to the while() statement on
line A. Line A states:

 While the character pointed to by pA (i.e. *pA) is not a nul
character (i.e. the terminating '\0'), do the following:

 line B states: copy the character pointed to by pA to the
space pointed to by pB, then increment pA so it points to the
next character and pB so it points to the next space.

 When we have copied the last character, pA now points to the
terminating nul character and the loop ends. However, we have not
copied the nul character. And, by definition a string in C
must be nul terminated. So, we add the nul character with line
C.

 It is very educational to run this program with your debugger
while watching strA, strB, pA and pB and single stepping through
the program. It is even more educational if instead of simply
defining strB[] as has been done above, initialize it also with
something like:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 strB[80] = "12345678901234567890123456789012345678901234567890"

where the number of digits used is greater than the length of
strA and then repeat the single stepping procedure while watching
the above variables. Give these things a try!

 Getting back to the prototype for puts() for a moment, the
"const" used as a parameter modifier informs the user that the
function will not modify the string pointed to by s, i.e. it will
treat that string as a constant.

 Of course, what the above program illustrates is a simple way
of copying a string. After playing with the above until you have
a good understanding of what is happening, we can proceed to
creating our own replacement for the standard strcpy() that comes
with C. It might look like:

 char *my_strcpy(char *destination, char *source)
 {
 char *p = destination
 while (*source != '\0')
 {
 *p++ = *source++;
 }
 *p = '\0';
 return destination.
 }

 In this case, I have followed the practice used in the
standard routine of returning a pointer to the destination.

 Again, the function is designed to accept the values of two
character pointers, i.e. addresses, and thus in the previous
program we could write:

int main(void)
{
 my_strcpy(strB, strA);
 puts(strB);
}

 I have deviated slightly from the form used in standard C
which would have the prototype:

 char *my_strcpy(char *destination, const char *source);

 Here the "const" modifier is used to assure the user that the
function will not modify the contents pointed to by the source
pointer. You can prove this by modifying the function above, and
its prototype, to include the "const" modifier as shown. Then,
within the function you can add a statement which attempts to
change the contents of that which is pointed to by source, such
as:

 *source = 'X';

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

which would normally change the first character of the string to
an X. The const modifier should cause your compiler to catch
this as an error. Try it and see.

 Now, let's consider some of the things the above examples
have shown us. First off, consider the fact that *ptr++ is to be
interpreted as returning the value pointed to by ptr and then
incrementing the pointer value. On the other hand, this has to
do with the precedence of the operators. Were we to write
(*ptr)++ we would increment, not the pointer, but that which the
pointer points to! i.e. if used on the first character of the
above example string the 'T' would be incremented to a 'U'. You
can write some simple example code to illustrate this.

 Recall again that a string is nothing more than an array
of characters, with the last character being a '\0'. What we
have done above is deal with copying an array. It happens to be
an array of characters but the technique could be applied to an
array of integers, doubles, etc. In those cases, however, we
would not be dealing with strings and hence the end of the array
would not be marked with a special value like the nul character.
We could implement a version that relied on a special value to
identify the end. For example, we could copy an array of positive
integers by marking the end with a negative integer. On the
other hand, it is more usual that when we write a function to
copy an array of items other than strings we pass the function
the number of items to be copied as well as the address of the
array, e.g. something like the following prototype might
indicate:

 void int_copy(int *ptrA, int *ptrB, int nbr);

where nbr is the number of integers to be copied. You might want
to play with this idea and create an array of integers and see if
you can write the function int_copy() and make it work.

 This permits using functions to manipulate large arrays. For
example, if we have an array of 5000 integers that we want to
manipulate with a function, we need only pass to that function
the address of the array (and any auxiliary information such as
nbr above, depending on what we are doing). The array itself does
not get passed, i.e. the whole array is not copied and put on
the stack before calling the function, only its address is sent.

 This is different from passing, say an integer, to a
function. When we pass an integer we make a copy of the integer,
i.e. get its value and put it on the stack. Within the function
any manipulation of the value passed can in no way effect the
original integer. But, with arrays and pointers we can pass the
address of the variable and hence manipulate the values of the
original variables.

->==
CHAPTER 4: More on Strings

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 Well, we have progressed quite a way in a short time! Let's
back up a little and look at what was done in Chapter 3 on
copying of strings but in a different light. Consider the
following function:

 char *my_strcpy(char dest[], char source[])
 {
 int i = 0;

 while (source[i] != '\0')
 {
 dest[i] = source[i];
 i++;
 }
 dest[i] = '\0';
 return dest;
 }

 Recall that strings are arrays of characters. Here we have
chosen to use array notation instead of pointer notation to do
the actual copying. The results are the same, i.e. the string
gets copied using this notation just as accurately as it did
before. This raises some interesting points which we will
discuss.

 Since parameters are passed by value, in both the passing of
a character pointer or the name of the array as above, what
actually gets passed is the address of the first element of each
array. Thus, the numerical value of the parameter passed is the
same whether we use a character pointer or an array name as a
parameter. This would tend to imply that somehow:

 source[i] is the same as * (p+i);

 In fact, this is true, i.e wherever one writes a[i] it can
be replaced with * (a + i) without any problems. In fact, the
compiler will create the same code in either case. Thus we see
that pointer arithmetic is the same thing as array indexing.
Either syntax produces the same result.

 This is NOT saying that pointers and arrays are the same
thing, they are not. We are only saying that to identify a given
element of an array we have the choice of two syntaxes, one using
array indexing and the other using pointer arithmetic, which
yield identical results.

 Now, looking at this last expression, part of it.. (a + i)
is a simple addition using the + operator and the rules of c
state that such an expression is commutative. That is (a + i)
is identical to (i + a). Thus we could write * (i + a) just as
easily as * (a + i).

 But * (i + a) could have come from i[a] ! From all of this
comes the curious truth that if:

 char a[20];

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 int i;

 writing a[3] = 'x'; is the same as writing

 3[a] = 'x';

 Try it! Set up an array of characters, integers or longs,
etc. and assigned the 3rd or 4th element a value using the
conventional approach and then print out that value to be sure
you have that working. Then reverse the array notation as I have
done above. A good compiler will not balk and the results will
be identical. A curiosity... nothing more!

 Now, looking at our function above, when we write:

 dest[i] = source[i];

due to the fact that array indexing and pointer arithmetic yield
identical results, we can write this as:

 * (dest + i) = * (source + i);

 But, this takes 2 additions for each value taken on by i.
Additions, generally speaking, take more time than
incrementations (such as those done using the ++ operator as in
i++). This may not be true in modern optimizing compilers, but
one can never be sure. Thus, the pointer version may be a bit
faster than the array version.

 Another way to speed up the pointer version would be to
change:

 while (*source != '\0') to simply while (*source)

since the value within the parenthesis will go to zero (FALSE) at
the same time in either case.

 At this point you might want to experiment a bit with writing
some of your own programs using pointers. Manipulating strings
is a good place to experiment. You might want to write your own
versions of such standard functions as:

 strlen();
 strcat();
 strchr();

and any others you might have on your system.

 We will come back to strings and their manipulation through
pointers in a future chapter. For now, let's move on and discuss
structures for a bit.

->==
CHAPTER 5: Pointers and Structures

 As you may know, we can declare the form of a block of data

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

containing different data types by means of a structure
declaration. For example, a personnel file might contain
structures which look something like:

 struct tag{
 char lname[20]; /* last name */
 char fname[20]; /* first name * /
 int age; /* age */
 float rate; /* e.g. 12.75 per hour * /
 } ;

 Let's say we have a bunch of these structures in a disk file
and we want to read each one out and print out the first and last
name of each one so that we can have a list of the people in our
files. The remaining information will not be printed out. We
will want to do this printing with a function call and pass to
that function a pointer to the structure at hand. For
demonstration purposes I will use only one structure for now. But
realize the goal is the writing of the function, not the reading
of the file which, presumably, we know how to do.

 For review, recall that we can access structure members with
the dot operator as in:

--------------- program 5.1 ------------------
#include <stdio.h>
#include <string.h>

struct tag{
 char lname[20]; /* last name */
 char fname[20]; /* first name * /
 int age; /* age * /
 float rate; /* e.g. 12.75 per hour */
 } ;

struct tag my_struct; /* declare the structure m_struct * /

int main(void)
{
 strcpy(my_struct.lname,"Jensen");
 strcpy(my_struct.fname,"Ted");
 printf("\n%s ",my_struct.fname);
 printf("%s\n",my_struct.lname);
 return 0;
}
-------------- end of program 5.1 --------------

 Now, this particular structure is rather small compared to
many used in C programs. To the above we might want to add:

 date_of_hire; (data types not shown)
 date_of_last_raise;
 last_percent_increase;
 emergency_phone;
 medical_plan;
 Social_S_Nbr;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 etc.....

 If we have a large number of employees, what we want to do
manipulate the data in these structures by means of functions.
For example we might want a function print out the name of the
employee listed in any structure passed to it. However, in the
original C (Kernighan & Ritchie, 1st Edition) it was not possible
to pass a structure, only a pointer to a structure could be
passed. In ANSI C, it is now permissible to pass the complete
structure. But, since our goal here is to learn more about
pointers, we won't pursue that.

 Anyway, if we pass the whole structure it means that we must
copy the contents of the structure from the calling function to
the called function. In systems using stacks, this is done by
pushing the contents of the structure on the stack. With large
structures this could prove to be a problem. However, passing a
pointer uses a minimum amount of stack space.

 In any case, since this is a discussion of pointers, we will
discuss how we go about passing a pointer to a structure and then
using it within the function.

 Consider the case described, i.e. we want a function that
will accept as a parameter a pointer to a structure and from
within that function we want to access members of the structure.
For example we want to print out the name of the employee in our
example structure.

 Okay, so we know that our pointer is going to point to a
structure declared using struct tag. We declare such a pointer
with the declaration:

 struct tag *st_ptr;

and we point it to our example structure with:

 st_ptr = &my_struct;

 Now, we can access a given member by de-referencing the
pointer. But, how do we de-reference the pointer to a structure?
Well, consider the fact that we might want to use the pointer to
set the age of the employee. We would write:

 (*st_ptr).age = 63;

 Look at this carefully. It says, replace that within the
parenthesis with that which st_ptr points to, which is the
structure my_struct. Thus, this breaks down to the same as
my_struct.age.

 However, this is a fairly often used expression and the
designers of C have created an alternate syntax with the same
meaning which is:

 st_ptr->age = 63;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 With that in mind, look at the following program:

------------ program 5.2 --------------

#include <stdio.h>
#include <string.h>

struct tag{ /* the structure type * /
 char lname[20]; /* last name */
 char fname[20]; /* first name * /
 int age; /* age */
 float rate; /* e.g. 12.75 per hour * /
 } ;

struct tag my_struct; /* define the structure */

void show_name(struct tag *p); /* function prototype * /

int main(void)
{
 struct tag *st_ptr; /* a pointer to a structure * /
 st_ptr = &my_struct; /* point the pointer to my_struct * /
 strcpy(my_struct.lname,"Jensen");
 strcpy(my_struct.fname,"Ted");
 printf("\n%s ",my_struct.fname);
 printf("%s\n",my_struct.lname);
 my_struct.age = 63;
 show_name(st_ptr); /* pass the pointer */
 return 0;
}

void show_name(struct tag *p)
{
 printf("\n%s ", p->fname); /* p points to a structure */
 printf("%s ", p->lname);
 printf("%d\n", p->age);
}
-------------------- end of program 5.2 ----------------

 Again, this is a lot of information to absorb at one time.
The reader should compile and run the various code snippets and
using a debugger monitor things like my_struct and p while single
stepping through the main and following the code down into the
function to see what is happening.

->==
CHAPTER 6: Some more on Strings, and Arrays of Strings

 Well, let's go back to strings for a bit. In the following
all assignments are to be understood as being global, i.e. made
outside of any function, including main.

 We pointed out in an earlier chapter that we could write:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 char my_string[40] = "Ted";

which would allocate space for a 40 byte array and put the string
in the first 4 bytes (three for the characters in the quotes and
a 4th to handle the terminating '\0'.

 Actually, if all we wanted to do was store the name "Ted" we
could write:

 char my_name[] = "Ted";

and the compiler would count the characters, leave room for the
nul character and store the total of the four characters in memory
the location of which would be returned by the array name, in this
case my_string.

 In some code, instead of the above, you might see:

 char *my_name = "Ted";

which is an alternate approach. Is there a difference between
these? The answer is.. yes. Using the array notation 4 bytes of
storage in the static memory block are taken up, one for each
character and one for the terminating nul character. But, in the
pointer notation the same 4 bytes required, _plus_ N bytes to
store the pointer variable my_name (where N depends on the system
but is usually a minimum of 2 bytes and can be 4 or more).

 In the array notation, "my_name" is short for &myname[0]
which is the address of the first element of the array. Since
the location of the array is fixed during run time, this is a
constant (not a variable). In the pointer notation my_name is a
variable. As to which is the _better_ method, that depends on
what you are going to do within the rest of the program.

 Let's now go one step further and consider what happens if
each of these declarations are done within a function as opposed
to globally outside the bounds of any function.

void my_function_A(char *ptr)
{
 char a[] = "ABCDE";
 .
 .
}

void my_function_B(char *ptr)
{
 char *cp = "ABCDE";
 .
 .
}

 Here we are dealing with automatic variables in both cases.
In my_function_A the automatic variable is the character array
a[]. In my_function_B it is the pointer cp. While C is designed

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

in such a way that a stack is not required on those systems
which don't use them, my particular processor (80286) and
compiler (TC++) combination uses a stack. I wrote a simple
program incorporating functions similar to those above and found
that in my_function_A the 5 characters in the string were all
stored on the stack. On the other hand, in my_function_B, the 5
characters were stored in the data space and the pointer was
stored on the stack.

 By making a[] static I could force the compiler to place the
5 characters in the data space as opposed to the stack. I did
this exercise to point out just one more difference between
dealing with arrays and dealing with pointers. By the way, array
initialization of automatic variables as I have done in
my_function_A was illegal in the older K&R C and only "came of
age" in the newer ANSI C. A fact that may be important when one
is considering portability and backwards compatibility.

 As long as we are discussing the relationship/differences
between pointers and arrays, let's move on to multi-dimensional
arrays. Consider, for example the array:

 char multi[5][10];

 Just what does this mean? Well, let's consider it in the
following light.

 char multi[5][10];
 ^^^^^^^^

 Let's take the underlined part to be the "name" of an array.
Then prepending the "char" and appending the [10] we have an
array of 10 characters. But, the name "multi[5]" is itself an
array indicating that there are 5 elements each being an array of
10 characters. Hence we have an array of 5 arrays of 10
characters each..

 Assume we have filled this two dimensional array with data of
some kind. In memory, it might look as if it had been formed by
initializing 5 separate arrays using something like:

 multi[0] = { '0','1','2','3','4','5','6','7','8','9'}
 multi[1] = { 'a','b','c','d','e','f','g','h','i','j'}
 multi[2] = { 'A','B','C','D','E','F','G','H','I','J'}
 multi[3] = { '9','8','7','6','5','4','3','2','1','0'}
 multi[4] = { 'J','I','H','G','F','E','D','C','B','A'}

At the same time, individual elements might be addressable using
syntax such as:

 multi[0][3] = '3'
 multi[1][7] = 'h'
 multi[4][0] = 'J'

 Since arrays are contiguous in memory, our actual memory
block for the above should look like:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 0123456789abcdefghijABCDEFGHIJ9876543210JIHGFEDCBA
 ^
 |_____ starting at the address &multi[0][0]

 Note that I did _not_ write multi[0] = "0123456789". Had I
done so a terminating '\0' would have been implied since whenever
double quotes are used a '\0' character is appended to the
characters contained within those quotes. Had that been the case
I would have had to set aside room for 11 characters per row
instead of 10.

 My goal in the above is to illustrate how memory is laid out
for 2 dimensional arrays. That is, this is a 2 dimensional array
of characters, NOT an array of "strings".

 Now, the compiler knows how many columns are present in the
array so it can interpret multi + 1 as the address of the 'a' in
the 2nd row above. That is, it adds 10, the number of columns,
to get this location. If we were dealing with integers and an
array with the same dimension the compiler would add
10*sizeof(int) which, on my machine, would be 20. Thus, the
address of the "9" in the 4th row above would be &multi[3][0] or
* (multi + 3) in pointer notation. To get to the content of the
2nd element in the 4th row we add 1 to this address and
dereference the result as in

 * (* (multi + 3) + 1)

 With a little thought we can see that:

 * (* (multi + row) + col) and
 multi[row][col] yield the same results.

 The following program illustrates this using integer arrays
instead of character arrays.

------------------- program 6.1 ----------------------
#include <stdio.h>

#define ROWS 5
#define COLS 10

int multi[ROWS][COLS];

int main(void)
{
 int row, col;
 for (row = 0; row < ROWS; row++)
 for(col = 0; col < COLS; col++)
 multi[row][col] = row*col;
 for (row = 0; row < ROWS; row++)
 for(col = 0; col < COLS; col++)
 {
 printf("\n%d ",multi[row][col]);
 printf("%d ",* (* (multi + row) + col));

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 }
 return 0;
}
----------------- end of program 6.1 ---------------------

 Because of the double de-referencing required in the pointer
version, the name of a 2 dimensional array is often said to be
equivalent to a pointer to a pointer. With a three dimensional
array we would be dealing with an array of arrays of arrays and
some might say its name would be equivalent to a pointer to a
pointer to a pointer. However, here we have initially set aside
the block of memory for the array by defining it using array
notation. Hence, we are dealing with a constant, not a variable.
That is we are talking about a fixed address not a variable
pointer. The dereferencing function used above permits us to
access any element in the array of arrays without the need of
changing the value of that address (the address of multi[0][0] as
given by the symbol "multi").

->==
CHAPTER 7: More on Multi-Dimensional Arrays

 In the previous chapter we noted that given

 #define ROWS 5
 #define COLS 10

 int multi[ROWS][COLS];

we can access individual elements of the array "multi" using
either:

 multi[row][col] or * (*(multi + row) + col)

To understand more fully what is going on, let us replace

 * (multi + row) with X as in:

 * (X + col)

 Now, from this we see that X is like a pointer since the
expression is de-referenced and we know that col is an integer.
Here the arithmetic being used is of a special kind called
"pointer arithmetic" is being used. That means that, since we
are talking about an integer array, the address pointed to by
(i.e. value of) X + col + 1 must be greater than the address
X + col by and amount equal to sizeof(int).

 Since we know the memory layout for 2 dimensional arrays, we
can determine that in the expression multi + row as used
above, multi + row + 1 must increase by value an amount
equal to that needed to "point to" the next row, which in this
case would be an amount equal to COLS * sizeof(int).

 That says that if the expression * (* (multi + row) + col)
is to be evaluated correctly at run time, the compiler must

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

generate code which takes into consideration the value of COLS,
i.e. the 2nd dimension. Because of the equivalence of the two
forms of expression, this is true whether we are using the
pointer expression as here or the array expression
multi[row][col].

Thus, to evaluate either expression, a total of 5 values must be
known:

 1) The address of the first element of the array, which is
 returned by the expression "multi", i.e. the name of the
 array.

 2) The size of the type of the elements of the array, in
 this case sizeof(int).

 3) The 2nd dimension of the array

 4) The specific index value for the first dimension, "row"
 in this case.

 5) The specific index value for the second dimension, "col"
 in this case.

 Given all of that, consider the problem of designing a
function to manipulate the element values of a previously
declared array. For example, one which would set all the elements
of the array "multi" to the value 1.

 void set_value(int m_array[][COLS])
 {
 int row, col;
 for(row = 0; row < ROWS; row++)
 {
 for(col = 0; col < COLS; col++)
 {
 m_array[row][col] = 1;
 }
 }
 }

And to call this function we would then use:

 set_value(multi);

 Now, within the function we have used the values #defined by
ROWS and COLS which set the limits on the for loops. But, these
#defines are just constants as far as the compiler is concerned,
i.e. there is nothing to connect them to the array size within
the function. row and col are local variables, of course. The
formal parameter definition informs the compiler that we are
talking about an integer array. We really don't need the first
dimension and, as will be seen later, there are occasions where
we would prefer not to define it within the parameter definition
so, out of habit or consistency, I have not used it here. But,
the second dimension _must_ be used as has been shown in the

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

expression for the parameter. The reason is that it is needed in
the evaluation of m_array[row][col] as has been described.
The reason is that while the parameter defines the data type (int
in this case) and the automatic variables for row and column are
defined in the for loops, only one value can be passed using a
single parameter. In this case, that is the value of "multi" as
noted in the call statement, i.e. the address of the first
element, often referred to as a pointer to the array. Thus, the
only way we have of informing the compiler of the 2nd dimension
is by explicitly including it in the parameter definition.

 In fact, in general all dimensions of higher order than one
are needed when dealing with multi-dimensional arrays. That is
if we are talking about 3 dimensional arrays, the 2nd _and_ 3rd
dimension must be specified in the parameter definition.

->==
CHAPTER 8: Pointers to Arrays

 Pointers, of course, can be "pointed at" any type of data
object, including arrays. While that was evident when we
discussed program 3.1, it is important to expand on how we do
this when it comes to multi-dimensional arrays.

 To review, in Chapter 2 we stated that given an array of
integers we could point an integer pointer at that array using:

 int *ptr;

 ptr = &my_array[0]; /* point our pointer at the first
 integer in our array * /

As we stated there, the type of the pointer variable must match
the type of the first element of the array.

 In addition, we can use a pointer as a formal parameter of a
function which is designed to manipulate an array. e.g.

 Given:

 int array[3] = { '1', '5', '7'} ;

 void a_func(int *p);

we can pass the address of the array to the function by making
the call

 a_func(array);

This kind of code promotes the mis-conception that pointers and
arrays are the same thing. Of course, if you have followed this
text carefully up to this point you know the difference between a
pointer and an array. The function would be better written (in
terms of clarity) as a_func(int p[]); Note that here
we need not include the dimension since what we are passing is
the address of the array, not the array itself.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 We now turn to the problem of the 2 dimensional array. As
stated in the last chapter, C interprets a 2 dimensional array as
an array of one dimensional arrays. That being the case, the
first element of a 2 dimensional array of integers is a one
dimensional array of integers. And a pointer to a two
dimensional array of integers must be a pointer to that data
type. One way of accomplishing this is through the use of the
keyword "typedef". typedef assigns a new name to a specified
data type. For example:

 typedef unsigned char byte;

provides the name "byte" to mean type "unsigned char". Hence

 byte b[10]; would be an array of unsigned characters.

Note that in the typedef declaration, the word "byte" has
replaced that which would normally be the name of our unsigned
char. That is, the rule for using typedef is that the new name
for the data type is the name used in the definition of the data
type. Thus in:

 typedef int Array[10];

Array becomes a data type for an array of 10 integers. i.e.

 Array my_arr;

declares my_arr as an array of 10 integers and

 Array arr2d[5];

makes arr2d an array of 5 arrays of 10 integers each.

 Also note that Array *p1d; makes p1d a pointer to an
array of 10 integers. Because *p1d points to the same type as
arr2, assigning the address of the two dimensional array arr2d to
p1d, the pointer to a one dimensional array of 10 integers is
acceptable. i.e. p1d = &arr2d[0]; or p1d = arr2d;
are both correct.

 Since the data type we use for our pointer is an array of 10
integers we would expect that incrementing p1d by 1 would change
its value by 10*sizeof(int), which it does. That is sizeof(*p1d)
is 20. You can prove this to yourself by writing and running a
simple short program.

 Now, while using typedef makes things clearer for the reader
and easier on the programmer, it is not really necessary. What
we need is a way of declaring a pointer like p1d without the need
of the typedef keyword. It turns out that this can be done and
that int (*p1d)[10]; is the proper declaration, i.e. p1d here
is a pointer to an array of 10 integers just as it was under the
declaration using the Array type. Note that this is different
than int *p1d[10]; which would make p1d the name of an

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

array of 10 pointers to type int.

->==
CHAPTER 9: Pointers and Dynamic Allocation of Memory

 There are times when it is convenient to allocate memory at
run time using malloc(), calloc(), or other allocation functions.
Using this approach permits postponing the decision on the size
of the memory block need to store an array, for example, until
run time. Or it permits using a section of memory for the
storage of an array of integers at one point in time, and then
when that memory is no longer needed it can be freed up for other
uses, such as the storage of an array of structures.

 When memory is allocated, the allocating function (such as
malloc(), calloc(), etc.) returns a pointer. The type of this
pointer depends on whether you are using an older K&R compiler or
the newer ANSI type compiler. With the older compiler the type
of the returned pointer is char, with the ANSI compiler it is
void.

 If you are using an older compiler, and you want to allocate
memory for an array of integers you will have to cast the char
pointer returned to an integer pointer. For example, to allocate
space for 10 integers we might write:

 int * iptr;
 iptr = (int *)malloc(10 * sizeof(int));
 if(iptr == NULL)
 { .. ERROR ROUTINE GOES HERE .. }

 If you are using an ANSI compliant compiler, malloc() returns
a void pointer and since a void pointer can be assigned to a
pointer variable of any object type, the (int *) cast shown above
is not needed. The array dimension can be determined at run time
and is not needed at compile time. That is, the "10" above could
be a variable read in from a data file or keyboard, or calculated
based on some need, at run time.

 Because of the equivalence between array and pointer
notation, once iptr has been assigned as above, one can use the
array notation. For example, one could write:

 int k;
 for(k = 0; k < 10; k++
 iptr[k] = 2;

to set the values of all elements to 2.

 Even with a reasonably good understanding of pointers and
arrays, one place the newcomer to C is likely to stumble at first
is in the dynamic allocation of multi-dimensional arrays. In
general, we would like to be able to access elements of such
arrays using array notation, not pointer notation, wherever
possible. Depending on the application we may or may not know
both dimensions at compile time. This leads to a variety of ways

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

to go about our task.

 As we have seen, when dynamically allocating a one
dimensional array the dimension can be determined at run time.
Now, when using dynamic allocation of higher order arrays, we
never need to know the first dimension at compile time. Whether
we need to know the higher dimensions depends on how we go about
writing the code. Here I will discuss various methods of
dynamically allocating room for 2 dimensional arrays of integers.

 First we will consider cases where the 2nd dimension is known
at compile time.

METHOD 1:

 One way of dealing with the problem is through the use of the
"typedef" keyword. To allocate a 2 dimensional array of integers
recall that the following two notations result in the same object
code being generated:

multi[row][col] = 1; * (* (multi + row) + col) = 1;

 It is also true that the following two notations generate the
same code:

 multi[row] * (multi + row)

 Since the one on the right must evaluate to a pointer, the
array notation on the left must also evaluate to a pointer. In
fact multi[0] will return a pointer to the first integer in the
first row, multi[1] a pointer to the first integer of the second
row, etc. Actually, multi[n] evaluates to a pointer to that
array of integers which makes up the n-th row of our 2
dimensional array. That is, multi can be thought of as an array
of arrays and multi[n] as a pointer to the n-th array of this
array of arrays. Here the word "pointer" is being used
to represent an address value. While such usage is common in the
literature, when reading such statements one must be careful to
distinguish between the constant address of an array and a
variable pointer which is a data object in itself.

Consider now:

#include <stdio.h>
#define COLS 5

typedef int RowArray[COLS];
RowArray * rptr;

int main(void)
{
 int nrows = 10;
 int row, col;
 rptr = malloc(nrows * COLS * sizeof(int))
 for(row = 0; row < nrows; row++)
 for(col = 0; col < COLS; col++)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 {
 rptr[row][col] = 17;
 }
}

 Here I have assumed an ANSI compiler so a cast on the void
pointer returned by malloc() is not required. If you are using
an older K&R compiler you will have to cast using:

 rptr = (RowArray *)malloc(.... etc.

 Using this approach, "rptr" has all the characteristics of an
array name and array notation may be used throughout the rest of
the program. That also means that if you intend to write a
function to modify the array contents, you must use COLS as a
part of the formal parameter in that function, just as we did
when discussing the passing of two dimensional arrays to a
function.

METHOD 2:

 In the METHOD 1 above, rptr turned out to be a pointer to
type "one dimensional array of COLS integers". It turns out that
there is syntax which can be used for this type without the need
of typedef. If we write:

int (char *xptr)[COLS];

the variable xptr will have all the same characteristics as the
variable rptr in METHOD 1 above, and we need not use the
"typedef" keyword. Here xptr is a pointer to an array of
integers and the size of that array is given by the #defined
COLS. The parenthesis placement makes the pointer notation
predominate, even though the array notation has higher
precedence. i.e. had we written

int char *xptr[COLS];

we would have defined xptr as an array of pointers holding the
number of pointers equal to that #defined by COLS. Which is not
the same thing at all. However, arrays of pointers have their
use in the dynamic allocation of two dimensional arrays, as will
be seen in the next 2 methods.

METHOD 3:

 Consider the case where we do not know the number of elements
in each row at compile time, i.e. both the number of rows and
number of columns must be determined at run time. One way of
doing this would be to create an array of pointers to type int
and then allocate space for each row and point these pointers at
each row. Consider:
--
#include <stdio.h>
#include <stdlib.h>

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

int main(void)
{
 int nrows = 5; /* Both nrows and ncols could be evaluated */
 int ncols = 10; /* or read in at run time * /
 int row, col;
 int * *rowptr;
 rowptr = malloc(nrows * sizeof(int *));
 if(rowptr == NULL)
 {
 puts("\nFailure to allocate room for row pointers.\n");
 exit(0);
 }
 printf("\n\n\nIndex Pointer(hex) Pointer(dec) Diff.(dec)");

 for(row = 0; row < nrows; row++)
 {
 rowptr[row] = malloc(ncols * sizeof(int));
 if(rowptr[row] == NULL)
 {
 printf("\nFailure to allocate for row[%d]\n",row);
 exit(0);
 }
 printf("\n%d %p %d", row, rowptr[row], rowptr[row]);
 if(row > 0)
 printf(" %d",(int)(rowptr[row] - rowptr[row-1]));
 }
 return 0;
}

 In the above code rowptr is a pointer to pointer to type int.
In this case it points to the first element of an array of
pointers to type int. Consider the number of calls to malloc():

 To get the array of pointers 1 call
 To get space for the rows 5 calls

 Total 6 calls

 If you choose to use this approach note that while you can
use the array notation to access individual elements of the
array, e.g. rowptr[row][col] = 17;, it does not mean that the
data in the "two dimensional array" is contiguous in memory.

 But, you can use the array notation just as if it were a
continuous block of memory. For example, you can write:

 rowptr[row][col] = 176;

just as if rowptr were the name of a two dimensional array
created at compile time. Of course 'row' and 'col' must be
within the bounds of the array you have created, just as with an
array created at compile time.

 If it is desired to have a contiguous block of memory

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

dedicated to the storage of the elements in the array it can be
done as follows:

METHOD 4:

 In this method we allocate a block of memory to hold the
whole array first. We then create an array of pointers to point
to each row. Thus even though the array of pointers is being
used, the actual array in memory is contiguous. The code looks
like this:

--
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

int main(void)
{
 int **rptr;
 int *aptr;
 int * testptr;
 int k;
 int nrows = 5; /* Both nrows and ncols could be evaluated */
 int ncols = 10; /* or read in at run time * /
 int row, col;
 /* we now allocate the memory for the array * /
 aptr = malloc(nrows * ncols * sizeof(int *));
 if(aptr == NULL)
 {
 puts("\nFailure to allocate room for the array");
 exit(0);
 }
 /* next we allocate room for the pointers to the rows * /
 rptr = malloc(nrows * sizeof(int *));
 if(rptr == NULL)
 {
 puts("\nFailure to allocate room for pointers");
 exit(0);
 }
 /* and now we 'point' the pointers * /
 clrscr();
 for(k = 0; k < nrows; k++)
 {
 rptr[k] = aptr + (k * ncols);
 }
 printf("\n\n\nIndex Pointer(hex) Pointer(dec) Diff.(dec)");

 for(row = 0; row < nrows; row++)
 {
 printf("\n%d %p %d", row, rptr[row], rptr[row]);
 if(row > 0)
 printf(" %d",(int)(rptr[row] - rptr[row-1]));
 }
 for(row = 0; row < nrows; row++)
 {
 for(col = 0; col < ncols; col++)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 {
 rptr[row][col] = row + col;
 printf("%d ", rptr[row][col]);
 }
 putchar('\n');
 }
 puts("\n\n\n");

 /* and here we illustrate that we are, in fact, dealing with
 a 2 dimensional array in a _contiguous_ block of memory. * /

 testptr = aptr;
 for(row = 0; row < nrows; row++)
 {
 for(col = 0; col < ncols; col++)
 {
 printf("%d ", *(testptr++));
 }
 putchar('\n');
 }
 return 0;
}

Consider again, the number of calls to malloc()

 To get room for the array itself 1 call
 To get room for the array of ptrs 1 call

 Total 2 calls

 Now, each call to malloc() creates additional space overhead
since malloc() is generally implemented by the operating system
forming a linked list which contains data concerning the size of
the block. But, more importantly, with large arrays (several
hundred rows) keeping track of what needs to be freed when the
time comes can be more cumbersome. This, combined with he
contiguousness of the data block which permits initialization to
all zeroes using memset() would seem to make the second
alternative the preferred one.

 As a final example on multidimensional arrays we will
illustrate the dynamic allocation of a three dimensional array.
This example will illustrate one more thing to watch when doing
this kind of allocation. For reasons cited above we will use the
approach outlined in alternative two. Consider the following
code:

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include <conio.h>

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

int X_DIM=16;
int Y_DIM=8;
int Z_DIM=4;

int main(void)
{
 char ***space;
 char ***Arr3D;
 int x, y, z;
 ptrdiff_t diff;

 /* first we set aside space for the array itself * /

 space = malloc(X_DIM * Y_DIM * Z_DIM * sizeof(char));

 /* next we allocate space of an array of pointers, each
 to eventually point to the first element of a
 2 dimensional array of pointers to pointers * /

 Arr3D = malloc(Z_DIM * sizeof(char **));

 /* and for each of these we assign a pointer to a newly
 allocated array of pointers to a row * /

 for(z = 0; z < Z_DIM; z++)
 {
 Arr3D[z] = malloc(Y_DIM * sizeof(char *));

 /* and for each space in this array we put a pointer to
 the first element of each row in the array space
 originally allocated * /

 for(y = 0; y < Y_DIM; y++)
 {
 Arr3D[z][y] = ((char *)space + (z*(X_DIM * Y_DIM) + y*X_DIM));
 }
 }

 /* And, now we check each address in our 3D array to see if
 the indexing of the Arr3d pointer leads through in a
 continuous manner * /

 for(z = 0; z < Z_DIM; z++)
 {
 printf("Location of array %d is %p\n", z, *Arr3D[z]);
 for(y = 0; y < Y_DIM; y++)
 {
 printf(" Array %d and Row %d starts at %p", z, y, Arr3D[z][y]);
 diff = Arr3D[z][y] - (char *)space;
 printf(" diff = %d ",diff);
 printf(" z = %d y = %d\n", z, y);
 }
 getch();
 }
 return 0;
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 If you have followed this tutorial up to this point you
should have no problem deciphering the above on the basis of the
comments alone. There is one line that deserves a bit of special
attention however. It reads:

 Arr3D[z][y] = ((char *)space + (z*(X_DIM * Y_DIM) + y*X_DIM));

 Note that here "space" is cast to a character pointer, which
is the same type as Arr3D[z][y]. A thing to be careful of,
however, is where that cast is made. If the cast were made
outside the overall parenthesis as in...

 Arr3D[z][y] = (char *)(space + (z*(X_DIM * Y_DIM) + y*X_DIM));

the code fails. The reason is that the cast, in this case, is
not so much to make the types on each side of the assignment
operator match, as it is to make the pointer arithmetic work.
Recall that when dealing with pointer arithmetic in something
like:

int *ptr;
ptr = ptr + 1;

the second line increments the pointer by sizeof(int), which is 2
on MS-DOS machines. Now looking at the mentioned line, it should
be obvious that

 (z* (X_DIM * Y_DIM) + y*X_DIM))

calculates the number of array elements This will turn out to be
an arithmetic constant after the calculation. Now since we are
dealing with an array of characters the result of the pointer
arithmetic which adds this value to the pointer to the start of
the array should yield a value equal to the pointer value plus
this constant. Were we using an int data type, i.e. casting our
"space" pointer to (int *), the actual value by which the pointer
would be incremented would be the calculated value times
sizeof(int).

->==
CHAPTER 10: Pointers to Functions

 Up to this point we have been discussing pointers to data
objects. C also permits the declaration of pointers to
functions. Pointers to functions have a variety of uses and some
of them will be discussed here.

 Consider the following real problem. You want to write a
function that is capable of sorting virtually any collection of
data that can be stored in an array. This might be an array of
strings, or integers, or floats, or even structures. The sorting
algorithm can be the same for all. For example, it could be a
simple bubble sort algorithm, or the more complex shell or quick

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

sort algorithm. We'll use a simple bubble sort for demonstration
purposes.

 Sedgewick [1] has described the bubble sort using C code by
setting up a function which when passed a pointer to the array
would sort it. If we call that function bubble(), a sort program
is described by bubble_1.c, which follows:

/* -------------------- bubble_1.c --------------------* /

#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

void bubble(int a[], int N);

int main(void)
{
 int i;
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int a[], int N)
{
 int i, j, t;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 if(a[j-1] > a[j])
 {
 t = a[j-1];
 a[j-1] = a[j];
 a[j] = t;
 }
}
/* ---------------------- end bubble_1.c -----------------------*/

The bubble sort is one of the simpler sorts. The algorithm scans
the array from the second to the last element comparing each
element with the one which precedes it. If the one that precedes
it is larger than the current element, the two are swapped so the
larger one is closer to the end of the array. On the first pass,
this results in the largest element ending up at the end of the
array. The array is now limited to all elements except the last
and the process repeated. This puts the next largest element at
a point preceding the largest element. The process is repeated

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

for a number of times equal to the number of elements minus 1.
The end result is a sorted array.

 Here our function is designed to sort an array of integers.
Thus in line 1 we are comparing integers and in lines 2 through 4
we are using temporary integer storage to store integers. What
we want to do now is see if we can convert this code so we can
use any data type, i.e. not be restricted to integers.

 At the same time we don't want to have to analyze our
algorithm and the code associated with it each time we use it.
We start by removing the comparison from within the function
bubble() so as to make it relatively easy to modify the
comparison function without having to re-write portions related
the actual algorithm. This results in bubble_2.c:

/* ---------------------- bubble_2.c -------------------------* /
 /* Separating the comparison function */

#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

void bubble(int a[], int N);
int compare(int m, int n);

int main(void)
{
 int i;
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int a[], int N)
{
 int i, j, t;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 if (compare(a[j-1], a[j]))
 {
 t = a[j-1];
 a[j-1] = a[j];
 a[j] = t;
 }
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

int compare(int m, int n)
{
 return (m > n);
}
/* --------------------- end of bubble_2.c -----------------------* /

If our goal is to make our sort routine data type independent,
one way of doing this is to use pointers to type void to point to
the data instead of using the integer data type. As a start in
that direction let's modify a few things in the above so that
pointers can be used. To begin with, we'll stick with pointers
to type integer.

/* ----------------------- bubble_3.c -------------------------* /
#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

void bubble(int *p, int N);
int compare(int *m, int *n);

int main(void)
{
 int i;
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int *p, int N)
{
 int i, j, t;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 if (compare(&p[j-1], &p[j]))
 {
 t = p[j-1];
 p[j-1] = p[j];
 p[j] = t;
 }
}

int compare(int *m, int *n)
{
 return (*m > *n);
}
/* ------------------ end of bubble3.c -------------------------* /

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Note the changes. We are now passing a pointer to an integer (or
array of integers) to bubble(). And from within bubble we are
passing pointers to the elements of the array that we want to
compare to our comparison function. And, of course we are
dereferencing these pointer in our compare() function in order to
make the actual comparison. Our next step will be to convert the
pointers in bubble() to pointers to type void so that that
function will become more type insensitive. This is shown in
bubble_4.

/* ------------------ bubble_4.c ----------------------------* /
#include <stdio.h>

int arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

void bubble(int *p, int N);
int compare(void *m, void *n);

int main(void)
{
 int i;
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr,10);
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

void bubble(int *p, int N)
{
 int i, j, t;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 if (compare((void *)&p[j-1], (void *)&p[j]))
 {
 t = p[j-1];
 p[j-1] = p[j];
 p[j] = t;
 }
}

int compare(void *m, void *n)
{
 int *m1, *n1;
 m1 = (int *)m;
 n1 = (int *)n;
 return (*m1 > *n1);
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

/* ------------------ end of bubble_4.c ---------------------*/

Note that, in doing this, in compare() we had to introduce the
casting of the void pointer types passed to the actual type being
sorted. But, as we'll see later that's okay. And since what is
being passed to bubble() is still a pointer to an array of
integers, we had to cast these pointers to void pointers when we
passed them as parameters in our call to compare().

We now address the problem of what we pass to bubble(). We want
to make the first parameter of that function a void pointer also.
But, that means that within bubble() we need to do something
about the variable t, which is currently an integer. Also, where
we use t = p[j-1]; the type of p[j-1] needs to be known in order
to know how many bytes to copy to the variable t (or whatever we
replace t with).

Currently, in bubble_4.c, knowledge within buffer() as to the
type of the data being sorted (and hence the size of each
individual element) is obtained from the fact that the first
parameter is a pointer to type integer. If we are going to be
able to use bubble() to sort any type of data, we need to make
that pointer a pointer to type void. But, in doing so we are
going to lose information concerning the size of individual
elements within the array. So, in bubble_5.c we will add a
separate parameter to handle this size information.

These changes, from bubble4.c to bubble5.c are, perhaps, a bit
more extensive than those we have made in the past. So, compare
the two modules carefully for differences.

/* ---------------------- bubble5.c ---------------------------* /
#include <stdio.h>
#include <string.h>

long arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

void bubble(void *p, size_t width, int N);
int compare(void *m, void *n);

int main(void)
{
 int i;
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 bubble(arr, sizeof(long), 10);
 putchar('\n');
 for(i = 0; i < 10; i++)
 {
 printf("%d ", arr[i]);
 }
 return 0;
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

void bubble(void *p, size_t width, int N)
{
 int i, j;
 unsigned char buf[4];
 unsigned char *bp = p;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 if (compare((void *)(bp + width*(j-1)), (void *)(bp + j*width))) /* 1 * /
 {
/* t = p[j-1]; */
 memcpy(buf, bp + width*(j-1), width);
/* p[j-1] = p[j]; * /
 memcpy(bp + width*(j-1), bp + j*width , width);
/* p[j] = t; */
 memcpy(bp + j*width, buf, width);
 }

}

int compare(void *m, void *n)
{
 long *m1, *n1;
 m1 = (long *)m;
 n1 = (long *)n;
 return (*m1 > *n1);
}
/* --------------------- end of bubble5.c ---------------------*/

Note that I have changed the data type of the array from int to
long to illustrate the changes needed in the compare() function.
Within bubble I've done away with the variable t (which we would
have had to change from type int to type long). I have added a
buffer of size 4 unsigned characters, which is the size needed to
hold a long (this will change again in future modifications to
this code). The unsigned character pointer *bp is used to point
to the base of the array to be sorted, i.e. to the first element
of that array.

We also had to modify what we passed to compare(), and how we do
the swapping of elements that the comparison indicates need
swapping. Use of memcpy() and pointer notation instead of array
notation work towards this reduction in type sensitivity.

Again, making a careful comparison of bubble5.c with bubble4.c
can result in improved understanding of what is happening and
why.

We move now to bubble6.c where we use the same function bubble()
that we used in bubble5.c to sort strings instead of long
integers. Of course we have to change the comparison function
since the means by which strings are compared is different from
that by which long integers are compared. And,in bubble6.c we
have deleted the lines within bubble() that were commented out in
bubble5.c.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

/* --------------------- bubble6.c ---------------------*/
#include <stdio.h>
#include <string.h>

#define MAX_BUF 256

long arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

char arr2[5][20] = { "Mickey Mouse",
 "Donald Duck",
 "Minnie Mouse",
 "Goofy",
 "Ted Jensen" } ;

void bubble(void *p, int width, int N);
int compare(void *m, void *n);

int main(void)
{
 int i;
 putchar('\n');
 for(i = 0; i < 5; i++)
 {
 printf("%s\n", arr2[i]);
 }
 bubble(arr2, 20, 5);
 putchar('\n\n');
 for(i = 0; i < 5; i++)
 {
 printf("%s\n", arr2[i]);
 }
 return 0;
}

void bubble(void *p, int width, int N)
 {
 int i, j, k;
 unsigned char buf[MAX_BUF];
 unsigned char *bp = p;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 {
 k = compare((void *)(bp + width*(j-1)), (void *)(bp + j*width));
 if (k > 0)
 {
 memcpy(buf, bp + width*(j-1), width);
 memcpy(bp + width*(j-1), bp + j*width , width);
 memcpy(bp + j*width, buf, width);
 }
 }
 }

int compare(void *m, void *n)
{
 char *m1 = m;
 char *n1 = n;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

 return (strcmp(m1,n1));
}
/* ------------------- end of bubble6.c ---------------------*/

But, the fact that bubble() was unchanged from that used in
bubble5.c indicates that that function is capable of sorting a
wide variety of data types. What is left to do is to pass to
bubble() the name of the comparison function we want to use so
that it can be truly universal. Just as the name of an array is
the address of the first element of the array in the data
segment, the name of a function decays into the address of that
function in the code segment. Thus we need to use a pointer to a
function. In this case the comparison function.

Pointers to functions must match the functions pointed to in the
number and types of the parameters and the type of the return
value. In our case, we declare our function pointer as:

 int (* fptr)(const void *p1, const void *p2);

Note that were we to write:

 int * fptr(const void *p1, const void *p2);

we would have a function prototype for a function which returned
a pointer to type int. That is because in C the parenthesis ()
operator have a higher precedence than the pointer * operator.
By putting the parenthesis around the string (* fptr) we indicate
that we are declaring a function pointer.

We now modify our declaration of bubble() by adding, as its 4th
parameter, a function pointer of the proper type. It's function
prototype becomes:

 void bubble(void *p, int width, int N,
 int(* fptr)(const void * , const void *));

When we call the bubble(), we insert the name of the comparison
function that we want to use. bubble7.c illustrate how this
approach permits the use of the same bubble() function for
sorting different types of data.

/* ------------------- bubble7.c ------------------* /
#include <stdio.h>
#include <string.h>

#define MAX_BUF 256

long arr[10] = { 3,6,1,2,3,8,4,1,7,2} ;

char arr2[5][20] = { "Mickey Mouse",
 "Donald Duck",
 "Minnie Mouse",
 "Goofy",
 "Ted Jensen" } ;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

void bubble(void *p, int width, int N,
 int(* fptr)(const void * , const void *));
int compare_string(const void *m, const void *n);
int compare_long(const void *m, const void *n);
int main(void)
{
 int i;
 puts("\nBefore Sorting:\n");
 for(i = 0; i < 10; i++) /* show the long ints */
 {
 printf("%ld ",arr[i]);
 }
 puts("\n");
 for(i = 0; i < 5; i++) /* show the strings * /
 {
 printf("%s\n", arr2[i]);
 }
 bubble(arr, 4, 10, compare_long); /* sort the longs */
 bubble(arr2, 20, 5, compare_string); /* sort the strings * /
 puts("\n\nAfter Sorting:\n");
 for(i = 0; i < 10; i++) /* show the sorted longs */
 {
 printf("%d ",arr[i]);
 }
 puts("\n");
 for(i = 0; i < 5; i++) /* show the sorted strings * /
 {
 printf("%s\n", arr2[i]);
 }
 return 0;
}

void bubble(void *p, int width, int N,
 int(* fptr)(const void * , const void *))
 {
 int i, j, k;
 unsigned char buf[MAX_BUF];
 unsigned char *bp = p;
 for(i = N-1; i >= 0; i--)
 for(j = 1; j <= i; j++)
 {
 k = fptr((void *)(bp + width*(j-1)), (void *)(bp + j*width));
 if (k > 0)
 {
 memcpy(buf, bp + width*(j-1), width);
 memcpy(bp + width*(j-1), bp + j*width , width);
 memcpy(bp + j*width, buf, width);
 }
 }
 }

int compare_string(const void *m, const void *n)
{
 char *m1 = (char *)m;
 char *n1 = (char *)n;
 return (strcmp(m1,n1));

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}

int compare_long(const void *m, const void *n)
{
 long *m1, *n1;
 m1 = (long *)m;
 n1 = (long *)n;
 return (*m1 > *n1);
}
/* ----------------- end of bubble7.c -----------------*/

Pointers and arrays - Storage and parameter passing
===

When dealing with arrays, it may help to think about the task of the
compiler. Given:

type array[num];

'array' is a reference to the beginning of the block of memory allocated
for the array. The amount of memory needed to store the array is num *
sizeof(type). The compiler figures out how to index through the array by
multiplying the subscript times the sizeof the type and adding the result
to a pointer to the base of the block. Thus, for:

float fAry[10];

fAry can be thought of as a float* that points to the beginning of the
block allocated to the array. We find the first element (subscript 0), by
calculating (subscript * sizeof(type) + base) = (0 * sizeof(float) +
fAry). Obvioulsy, the first element is at the base. The second element is
four bytes in from the base at (fAry + 4 * sizeof(float)). And so on.

So, the key for the compiler to be able to generate proper indexing through
the array, is that the compiler know the size of the type contained in the
array. If the type is float, then element 0 is at base, and element 1 is
at base+4. If the type is a structure of 50 bytes, then element 1 would be
at base+50.

For a two-dimensional array, the block of memory is contiguous and the
left-most index is the major increment. The array ary[5][10] can be looked
at as an array containing 5 units of ary[10]. The elements ary[0][0]
through ary[0][9] are contiguous, and the next element is ary[1][0]. Here,
to increment through the ten elements of ary[0][0] thruough ary[0][9], the
compiler must again know the size of the type contained in the array. But
to increment to the beginning of the second set of ten elements, the
compiler must know both the size of the type and the size of the minor

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

increment. For int ary[i][j], the beginning of ary[i] is at ary + i * (max
j) * sizeof(type), which would be ary + i * 10 * 2. So the second
element would start at 20 bytes offset from the base of the block.

At a simple level, there is no real difference between char* cPtr and
char[] cAry. Both labels cPtr and cAry are references to the beginning of
a block of memory allocated to store elements of type char. However, there
are some distinct differences in the way memory is allocated for them. Let
us consider the following declarations being made as local (automatic)
variables:

char *ptr1;
char *ptr2 = "method 1";
char ptr3[9] = "method 2";
char ptr4[] = "method 3";

The size of a pointer, sizeof(void*), is either 2 or 4 bytes depending on
the memory model. We will assume the large memory model, where pointers
are 4 bytes.

In the first case, 4 bytes are allocated on the stack for ptr1. However,
no memory has been allocated to which ptr1 might refer, and the value of
ptr1 is undefined. ptr1 is called an uninitialized pointer.

In the second case, 4 bytes are allocated for ptr2 on the stack, and 9
bytes are allocated in the data segment. The bytes in the data segment are
initialized with the string literal "method 1" (allowing one for the null
terminator), and ptr2 is initialized to point to the 9 bytes in the data
segment.

In the third case, when the function is called, 9 bytes are allocated on
the stack, and those 9 bytes are initialized with the values of the
characters in the string literal "method 2". Where do the bytes come from?
The string literal has been stored in the data segment. When your function
is called, the space is allocated on the stack and the string literal is
copied into those bytes. Using this method, process time is lost to copy
the bytes, and during the execution of your function, the string actually
exists in two places, the original copy in the data segment, and the local
copy on the stack.

The fourth case works just like the third, except the compiler figures out
for you the length of the literal.

When declared as global variables, there are some distinct differences.
ptr1 is still an uninitialized pointer, but the 4 bytes allocated to hold
the pointer are now in the data segment instead of on the stack. The 4

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

bytes for ptr2 are also in the data segment; so now we have a 4-byte
pointer in the data segment that point to a 9-byte block, also in the data
segment, which holds the string literal "method 2". For ptr3 and ptr4,
space is never allocated on the stack, there is only one copy ever of the
literal, and using the variables ptr3 or ptr4 is the same as manipulating a
pointer to the string.

When declared as local variables, the most efficient is the method used for
ptr1. Declared as global variables, the most efficient are ptr3 and ptr4.

Now let's look at passing these arrays to functions. int* iptr points to
an integer. If I pass iptr to a function, then that function can use iptr
to access and modify the value pointed to by iptr. But, the function only
gets a copy of iptr, so if the function modifies its copy of the pointer,
the calling function will neither know nor be affected. This is important
when passing an uninitialized pointer to a function that will allocate
memory and initialize the pointer to point to that block of memory. Since
this requires the pointer itself to be modified, we must tell the function
where the pointer is, or pass a pointer to the pointer.

There is a subtlety here with respect to arrays. If I declare a function:

void foo(int fooAry[10]);

then it would seem that 2 * 10 = 20 bytes are going to be passed on the
stack. However, in the case of arrays, what actually gets passed is a
pointer to the array - just sizeof(void*) bytes. Also, since the
function actually receives a pointer to the array, and not a local copy, if
function foo modifies the array, then the calling routine could end up with
corrupted data. So, the following call to function foo could result in
mainAry being modified in foo!

main() {
 int mainAry[10];
 foo(mainAry);
}

Although they are similar, the same rule does not hold for structs. A
struct is passed by value, so passing a struct of 50 bytes will allocate 50
bytes on the stack.

Is the following example correct and will the array iAry be modified?

void foo(int* iptr) {
 iptr[2] = 5;
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

main() {
 int iAry[10];
 foo(iAry);
}

Yes. Since the compiler knows the type, it knows how to index through the
array in function foo. Howver, we must ensure that we don't try to make it
index beyond the tenth element because this is all the memory that has been
allocated.

The following shows how to pass a two-dimensional array:

void foo1(float ary[5][10]) {}
void foo2(float ary[][10]) {}

main() {
 float fAry[10][10];
 foo1(fAry);
 foo2(fAry);
}

Notice that foo1 and foo2 both accomplish the same thing. The compiler
does not need to know the value of the major (left-most) dimension.
However, could we declare this?

void foo3(float ** ary) {}

No. How would the compiler know how to index into the array? It's easy
enough to figure out where ary[0][0] through ary[0][9] are; but, how does
the compiler know where ary[1][0] is? It must know the extent of the
second dimension. However, the above function definition is correct.
Only, ary is a pointer to a pointer to type float, which is more commonly
viewed as an array of pointers to type float. So, ary[0] is of type
float* , a pointer to one float, or an array of floats. Allocating the
array of pointers, which are 4 bytes each, to each point to a single float,
also 4 bytes, would not be efficient. If we used it as a reference to an
array of floats, then it might be useful; but, we would either have to make
arrays refered to by each of the pointers in the array the same
predetermined length, or have some means of finding the end of each of
those arrays. The usefulness of such a data structure is not readily
apparent for floats, but for arrays of type char (or strings), it makes
more sense.

I can implement two-dimensional arrays of type char in the same fashion and
treat them as an array of strings. However, strings are often of different

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

lengths. Consider an array of 10 strings where the longest string is 10
characters. A two-dimensional array would be:

#define maxLen 11
#define maxItems 10
char myString[maxItems][maxLen];

The overall size of the array myStrings is 10 * 11 * sizeof(char) = 110
bytes. If the strings are not all 10 characters long, there will be wasted
space. Of course, this may not be significant. But, there is another way
of accomplishing this. Consider the following:

char *myStrings1[maxItems];
char *myStrings2[];
char **myStrings3;

The first is an a array of 10 pointers to type char. Each of the 10
pointers in the array are uninitialized, and must be initialized using some
form of dynamic memory allocation such as calls to malloc.

myStrings2 is a pointer to an array of pointers. But, no memory has been
allocated to hold that array. So to use it, we must first allocate space
to hold the array. Then we can initailize the elements of the array, each
of them a pointer to type char, by a separate allocation and initialization
for each of them. myStrings3, a pointer to a pointer to type char, works
the same as myStrings2. Just as int * iptr can be looked at as an array of
integers, so can char **myStrings3 be viewed as a pointer to a pointer to
type char, or, an array of pointers to type char. Thus to use it we must
first allocate space to hold the array:

myStrings = (char**) malloc(nItems * sizeof(char *));

Lets say that nItems = 10 and we are still using the large memory model.
The amount of allocated space is 10 * 4 = 40 bytes, which is just enough to
hold ten char pointers. Now we must allocate space for each of the
strings, and initialize the corresponding pointer in the array to reference
that allocated block of memory. In our example, we will do this in a loop:

for(i=0; i<nItems; i++)
 myStrings[i] = (char*) malloc(maxLen + 1);

Why is this possibly better than just declaring myStrings[nItems][maxLen]?
One reason is that it moves the structure into the far heap (in our memory
model) where there is more memory than in the data segment or on the stack.
Another is that using this technique, we can create a two-dimensional array
(an array of strings or a multiple dimensional array of any type) that is

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

effectively >64K. As long as neither the block that holds my array of
pointers nor any of the blocks allocated for each of those pointers
exceeds 64K, I can successfully access data that is in a structure format
which totals well over a segment, or even several segments. Another is
that I don't have to allocate the same amount of space for each of the
strings. By definition, a string is terminated with a null ('\0'). Since
we have a convenient method of finding the end of the array (unlike the
example for floats), this is easy to use for strings.

So, now lets say we want to pass this array of strings to a function. In
the first case, we only want to use the strings to display them.

void Show(char ** strings)
{
 puts(string[1]);
}

The above will display the second string in my array of strings. This
method of passing the strings will also allow us to modify the contents of
each of the strings, or even initialize each of the pointers in the array,
since it is actually passed a pointer which refers to the base of the array
that holds the pointers to each of the strings. Now suppose I want to
initialize the pointer to the actual array. In my main function, I have
merely declared char **myStrings, and I want to allocate space for the
array of pointers and for each of the items to which those pointers will
point, all in a function. We might do that like this.

#include <stdio.h>
#include <string.h>
#include <alloc.h>

void foo(char *** ary, int nItems, int maxLen) {
 int i;
 *ary = (char**) malloc(nItems * sizeof(char*));
 for(i=0; i<nItems; i++)
 (*ary)[i] = (char*) malloc(maxLen + 1); /* sizeof(char) = 1 * /
 strcpy((*ary)[0], "The wonderful world of pointers!");
}

void main() {
 char **myStrings;
 foo(&myStrings, 5, 40);
 puts(myStrings[0]);
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

*********************************** Good Luck Helpmate User

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

