POINTERSAND ARRAYSINC

There are things and pointersto things. Knowing the difference between the two is very
important. This concept isillustrated in Figure 13-1.
Figure 13-1. A thing and a pointer to athing

= (w1000
) thing,_ptr
Lhimg

0x1000
A thing A pointer

In this book, we use abox to represent athing. The name of the variable is written on the
bottom of the box. In this case, our variable is named thing. The value of the variable is 6.
The address of thing is 0x1000 Addresses are automatically assigned by the C compiler to
every variable. Normally, you don't have to worry about the addresses of variables, but
you should understand that they're there.

Our pointer (thing_ptr) pointsto the variable thing. Pointers are also called address
variables because they contain the addresses of other variables. In this case, our pointer
contains the address 0x100Q Because this is the address of thing, we say that thing_gr
points to thing.

Variables and pointers are much like street addresses and houses. For example, your
address might be "214 Green Hill Lane." Houses come in many different shapes and
sizes. Addresses are approximately the same size (street, city, state, and zip). So, while
"1600 Pennsylvania Ave." might point to avery big white house and "8347 Undersea
Street" might be a one-room shack, both addresses are the same size.

The sameistruein C. While things may be big and small, pointers come in one size
(relatively small).[1]

Many novice programmers get pointers and their contents confused. In order to limit this
problem, all pointer variables in this book end with the extension _ptr. Y ou might want to
follow this convention in your own programs. Although this notation is not as common as
it should be, it is extremely useful.

Many different address variables can point to the same thing. This concept is true for
street addresses as well. Table 13-1 lists the location of important services in a small

town.
Table 13-1: Directory of Ed's Town USA
Service ddress Building

(variable name) ||(address value) |(thing)

[Fire Department |1 Main Street [City Hall
[Police Station |1 Main Street ||City Hall
|Planning office ||1 Main Street _[City Hall

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

|Gas Station 2 Main Street |[Ed's Gas Station

In this case, we have a government building that serves many functions. Although it has
one address, three different pointers point to it.
Aswe will seeinthis chapter, pointers can be used as a quick and simple way to access
arrays. In later chapters, we will discover how pointers can be used to create new
variables and complex data structures such as linked lists and trees. As you go through
the rest of the book, you will be able to understand these data structures as well as create
your own.
A pointer is declared by putting an asterisk (*) in front of the variable name in the
declaration statement:

int thing; /* define athing */

int *thing_ptr; /* define a pointer to athing */
Table 13-2 lists the operators used in conjunction with pointers.

Table 13-2: Pointer Operators

(Operator |Meaning
* |Dereference (given a pointer, get the thi ng referenced)
& Address of (given athi ng, point to it)

The operator ampersand (&) returns the address of athing which is a pointer. The
operator asterisk (*) returns the object to which a pointer points. These operators can
easily cause confusion. Table 13-3 shows the syntax for the various pointer operators.

Table 13-3: Pointer Operator Syntax

|C Code |Description
fthing Simple thing (variable)
&thing |Pointer to variable thing
ithing_ptr ||Pointer to an integer (may or may not be specific integer thing)
*thing_pr ||I nteger
Let'slook a some typical uses of the various pointer operators:

int thing; /* Declare an integer (athing) */

thing = 4;
The variable thing is athing. The declaration int thing does not contain an *, so thing is ot a
pointer:

int *thing_ptr; /* Declare a pointer to athing */
The variable thing_gr isapointer. The * in the declaration indicates this is a pointer. Also,
we have put the extension _ptr onto the name:

thing_ptr = &thing; /* Point to thething */
The expression &thing is a pointer to athing. The variable thing is an object. The &
(address of operator) getsthe address of an object (a pointer), so &thing is a pointer. We
then assign this to thing_ptr, also of type pointer:

thing_ptr=5; / Set"thing"to5*/

/* We may or may not be pointing */

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

[* to the specific integer "thing" */
The expression *thing_ptr indicates athing. The variable thing_ptr is a pointer. The *
(dereference operator) tells C to look at the data pointed to, not the pointer itself. Note
that this points to any integer. It may or may not point to the specific variable thing.

| ntr oduction

These pointer operations are summarized in Figure 13-2.
Figure 13-2. Pointer operations

@) thing ptr = &thing;

¥] -
Ot a0g T Assigns ching's address
thing_ptr k 0 thing ptr

thing
e T 000

) other = *thing ptr;

"

4 - 000 Assigns 10 other the
J thing. gtr value at the addrass
other |~ thing |~ i thing ptr carries.

Toc1 0004 (D0

O *thing ptr = 6;

(1000 Assigns to a value to what
thing_ptr thing ptr points fo

thing
O 1300

The following examples show how to misuse the pointer operations:
*thing
isillegal. It asks C to get the object pointed to by the variable thing.
Because thing is not a pointer, this operation is invalid.

&thing_ptr

is legal, but strange. thing_ptr is a pointer. The & (address of operator) gets
apointer to the object (in this case thing_gr). The result is a pointer to a
pointer.

Example 13-1 illustrates a smple use of pointers. It declares one object, one thing, and a
pointer, thing_ptr. thing is set explicitly by the line;

thing = 2;
Theline:

thing_ptr = &thing;
causes C to set thing_ptr to the address of thing. From this point on, thing and *thing_ptr are
the same.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Example 13-1: thing/thing.c

#include <stdio.h>

int main()

{
int thing_var; /* defineavariable for thing */
int *thing_ptr; /* define a pointer to thing */

thing var =2; /* assigning avalueto thing */
printf("Thing %d\n", thing_var);

thing_ptr = &thing_var; /* make the pointer point to thing */
thing_ptr =3; / thing_ptr pointsto thing_var so */

* thing_var changesto 3*/
printf("Thing %d\n", thing_var);

[* another way of doing the printf */
printf("Thing %d\n", *thing_ptr);
return (0);

}

Several pointers can point to the same thing:
int something;

1
2
3 int *firg_ptr; /* onepointer */

4: int *second_pir; /* another pointer */
5:

6

7

8

something = 1; [* givethething avaue*/

. first_ptr = &something;
9: second_pir = first_ptr;
Inline 8, we use the & operator to change something, athing, into a pointer that can be
assigned to first_ptr. Because first_ptr and second_ptr are both pointers, we can do a direct
assignment in line 9.
After executing this program fragment, we have the situation shown in Figure 13-3.
Figure 13-3. Two pointersand athing

- |
first_ptr - - second_pir
01000 ! 0x1000
gamething
1000

Y ou should note that while we have three variables, there is only one integer (something).

The following are all equivalent:
something = 1;
*first_ptr =1,
*second_ptr = 1;

Pointers as Function Arguments

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

C passes parameters using "call by value." That is, the parameters go only one way into
the function. The only result of a function isasingle return value. This concept is
illustrated in Figure 13-4.

Figure 13-4. Function call

Retum valua

However, pointers can be used to get around this restriction.

Imagine that there are two people, Sam and Joe, and whenever they meet, Sam can only
talk and Joe can only listen. How is Sam ever going to get any information from Joe?
Simple: all Sam hasto do istell Joe, "I want you to leave the answer in the mailbox at
335 West 5th Street.”

C usesasimilar trick to passinformation from a function to its caller. In Example 13-2,
main wants the function inc_count to increment the variable count.

Passing it directly would not work, so a pointer is passed instead ("Here's the address of
the variable | want you to increment”). Note that the prototype for inc_count contains an int
*. This format indicates that the single parameter given to this function is a pointer to an
integer, not the integer itself.

Example 13-2: call/call.c

#include <stdio.h>
void inc_count(int * count_ptr)

(*count_ptr)++;
int main()
{

int count=0; /* number of timesthrough */

while (count < 10)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

inc_count(& count);

return (0);
}

This code is represented graphically in Figure 13-5. Note that the parameter is not
changed, but what it pointsto is changed.

Figure 13-5. Call of inc_count

while (count < 10)
ine count {Ecount);

Kt

1000

Calls the function
inc_count, Sending
Ecount 85 a parameter.
count * s address in now
in the function

Declaration of the
function, giving the local
name count_prr to
the paramater &counl

041000

Fe

Increments the value at
fhe address that
count_ptr, CHTIES.

0x 1000

Finally, there is a special pointer called NULL. It points to nothing. (The actual numeric
value is0.) The standard include file, locale.h, defines the constant NULL. (Thisfileis
usually not directly included, but is usually brought in by the include files stdio.h or
stdlib.h.) The NULL pointer is represented graphically in Figure 13-6.

Figure 13-6. NULL

const Pointers

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Declaring constant pointersis alittle tricky. For example, the declaration:
const int result = 5;

tells C that result is a constant o that:

result=10; /* lllegal */
isillegal. The declaration:

const char *answer_ptr = "Forty-Two";
does nat tell C that the variable answer_ptr is a constant. Instead, it tells C that the data
pointed to by answer_ptr IS a constant. The data cannot be changed, but the pointer can.
Again we need to make sure we know the difference between "things' and "pointersto
things."
What's answer_ptr? A pointer. Can it be changed? Yes, it's just a pointer. What does it
point to? A const char array. Can the data pointed to by answer_ptr be changed? No, it's

constant.
InCthisis:
answer_ptr = "Fifty-One"; /* Legal (answer_ptr isavariable) */
answer_ptr ='X"; / lllegal (*answer_ptr isaconstant) */
If we put the const after the* wetell C that the pointer is constant.
For example:

char *const name_ptr = "Test";
What's name_ptr? It is a constant pointer. Can it be changed? No. What does it point to? A

character. Can the data we pointed to by name ptr be changed? Y es.
name_ptr = "New"; /* lllegal (name_ptr is constant) */
name_ptr ='B’; / Legd (*name_ptr isachar) */
Finally, we can put const in both places, creating a pointer that cannot be changed to a

data item that cannot be changed:
const char *congt title_ptr = "Title";

Pointersand Arrays

C allows pointer arithmetic (addition and subtraction). Suppose we have:

char array[5];

char *array_ptr = &array[0];
In this example, *array_ptr isthe same as array[0], * (array_ptr+1) iSthe same as array[1],
*(array_ptr+2) is the same as array[2], and so on. Note the use of parentheses. Pointer
arithmetic is represented graphically in Figure 13-7.
Figure 13-7. Pointersinto an array

t 05000 ooy 055000 ool
i | | e b T T N - e AL
0001 aprayln) BSO0T arayil
e e
2 2
el izl o il
Ox6003 armn] O=500% a“.av[a]
OKB0D4 apraviag D004 amraya)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

However, (*array_ptr)+1 is not the same as array[1]. The +1 is outside the parentheses, so it
is added after the dereference. So (*array_ptr)+1 IS the same as array[0]+1.

At first glance, this method may seem like a complex way of representing simple array
indices. We are starting with simple pointer arithmetic. In later chapters we will use more
complex pointersto handle more difficult functions efficiently.

The elements of an array are assigned to consecutive addresses. For example, array[0] may
be placed at address 0xff000024 Then array[1] would be placed at address 0xff000025 and so
on. This structure means that a pointer can be used to find each element of the array.
Example 13-3 prints out the elements and addresses of a simple character array.

Example 13-3: array-p/array-p.c

#include <stdio.n>

#define ARRAY_SIZE 10 /* Number of charactersin array */
/* Array to print */
char aray[ARRAY_SIZE] ="0123456789;

int main()
{
intindex; /* Index into thearray */

for (index = 0; index < ARRAY _SIZE; ++index) {
printf(" &array[index]=0x%op (array+index)=0x%op array[index]=0x%x\n",
&array[index], (array+index), array[index]);

return (0);
}

NOTE: When printing pointers, the special conversion %p should be used.

When run, this program prints:

&array[index] (array+index) array[index]

0x400 0x4000 0x30

0x401 0x40b1 0x31

0x4002 Ox4002 Ox32

0x400b3 Ox4003 0x33

0x404 0x4004 0x34

0x40b5 0x400b5 0x35

0x4006 Ox4006 0x36

0x40b7 0x40b7 0x37

0x40h8 0x4008 0x38

0x4009 Ox4009 Ox39
Characters use one byte, so the elements in a character array will be assigned consecutive
addresses. A short int font uses two bytes, so in an array of short int, the addresses increase
by two. Does this mean that array+1 will not work for anything other than characters? No.
C automatically scales pointer arithmetic so that it works correctly. In this case, array+1
will point to element number 1.
C provides a shorthand for dealing with arrays. Rather than writing:

array_ptr = &array[0];
we can write:

array_ptr = array;,

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

C blurs the distinction between pointers and arrays by treating them in the same manner
in many cases. Here we use the variable array as a pointer, and C automatically does the
necessary conversion.

Example 13-4 counts the number of elements that are nonzero and stops when a zero is
found. No limit check is provided, so there must be at least one zero in the array.
Example 13-4: ptr2/ptr2.c

#include <stdio.n>

intarray[] ={4,5,8,9,8,1,0,1,9, 3};
int index;

int main()

index = 0;
while (array[index] != 0)
++index;

printf("Number of elements before zero %d\n",
index);
return (0);

Example 13-5 isaversion of Example 13-4 that uses pointers.
Example 13-5: ptr3/ptr3.c

#include <stdio.nh>

intarray[] ={4,5,8,9,8,1,0,1,9, 3};
int *array_ptr;

int main()
{
array_ptr = array;

while ((*array_ptr) !=0)
++array_ptr;

printf("Number of elements before zero %d\n",

array_ptr - array);
return (0);

}
Notice that when we wish to examine the data in the array, we use the dereference

operator (*). This operator is used in the statement:

while ((*array_ptr) '=0)
When we wish to change the pointer itself, no other operator is used. For example, the
line:

++array_ptr;
increments the pointer, not the data.
Example 13-4 uses the expression (array[index] != 0). This expression requires the compiler
to generate an index operation, which takes longer than a simple pointer dereference,

((array_ptr) 1= 0).

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

The expression at the end of this program, array_ptr - array, computes how far array_ptr is
into the array.

When passing an array to aprocedure, C will automatically change the array into a
pointer. In fact, if you put & before the array, C will issue awarning. Example 13-6
illustrates the various ways in which an array can be passed to a subroutine.

Example 13-6: init-a/init-a.c (continued)

#define MAX 10 /* Sizeof thearray */

/***** *kkkkhk kkkkkk kkkkk * * * * * * * * * * *kkk
* init_array 1 -- Zeroes out an array. *

* *

* Parameters *

* data-- Thearray to zero out. *

*kkkkkk * % * % * kkkkk * *kk * * * * * * *kkk */

void init_array_1(int data[])
int index;

for (index = 0; index < MAX; ++index)
data]index] = 0;

/***** kkkkkk kkkkkk kkkkk kkkkkk khkkhkhkk hkkkkk kkkk * kk%k * kkk

* init_array 2 -- Zeroes out an array. *

* *

* Parameters *

* data _ptr -- Pointer to array to zero. *

*kkkk * * * * * *kkkk * * * * * * * * *kkk */
void init_array_2(int *data_ptr)

{
int index;

for (index = 0; index < MAX; ++index)
*(data_ptr + index) = 0;
}
int main()

int array[MAX];

void init_array _1();
void init_array_2();

/* one way of initializing the array */
init_array_1(array);

[* another way of initializing the array */
init_array_1(&array[Q]);

[* works, but the compiler generates awarning */
init_array_1(&array);

/* Similar to the first method but */
/* function isdifferent */

init_array 2(array);

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

return (0);
}

How Not to Use Pointers

The major goal of this book isto teach you how to creste clear, readable, maintainable
code. Unfortunately, not everyone has read this book and some people still believe that
you should make your code as compact as possible. This belief can result in programmers
using the ++ and -- operators inside other statements.

Example 13-7 shows several examples in which pointers and the increment operator are
used together.

Example 13-7: Bad Pointer Usage

[* This program shows programming practices that should ** NOT** be used */
/* Unfortunately, too many programmers use them */
int array[10]; /* Anarray for our data*/
int main()
{
int *data_ptr; /* Pointer to the data */
intvalue, /* A datavalue*/

data _ptr = &array[0];/* Point to thefirst element */
value = *data_ptr++; /* Get element #0, data_ptr pointsto element #1 */
value = *++data_ptr; /* Get element #2, data_ptr pointsto element #2 */
value = ++*data_ptr; /* Increment element #2, return its value */

/* Leave data ptr alone */

To understand each of these statements, you must carefully dissect each expression to
discover its hidden meaning. When | do maintenance programming, | don't want to have
to worry about hidden meanings, so please don't code like this, and shoot anyone who
does.

These statements are dissected in Figure 13-8.

Figure 13-8. Pointer operations dissected

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

oltain the vaive painted o Dy
data_ptr

I 1
value = *data ptr++;

increment data

data_ptr
increment data |
data_ptr) }
value = *t+i+data ptr;
1]
Dereference the pointer and return Obtain the vaiue pointed to by
the datd in the array data_ptr aftarincramentation
I | 1
value = ++*data ptr;
1

Increment the data in the
Array

This example is a little extreme, but it illustrates how side effects can easily become
confusing.

Example 13-8 is an example of the code you're more likely to run into. The program
copies a string from the source (p) to the destination (q).

Example 13-8: Cryptic Use of Pointers

void copy_string(char *p, char *q)
{

while (*p++ = *q++);
}
Given time, agood programmer will decode this. However, understanding the programis
much easier when we are a bit more verbose, asin Example 13-9.
Example 13-9: Readalde Use of Pointers

/***** kkkkkk kkkkkk hkkhkk kkkkkk kkkkkk kkkk * kk%k * kk%k * kkk

* copy_string -- Copies one gtring to another. *
* *

* Parameters *
* dest -- Whereto put the string *
* source-- Whereto get it *

*kkkkkkkkk khkkkkk khkkkk hkkkk kkkk * kk%k * kk%k * kk%k * kkk */

void copy_string(char *dest, char * source)

while (1) {
*dest = * source;

/* Exit if we copied the end of string */
if (*dest =="\0)
return;

++dest;
++30urce;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}
}

Using Pointersto Split a String

Suppose we are given a string of the form "Last/First." We want to split this into two
strings, one containing the first name and one containing the last name.
We need a function to find the slash in the name. The standard function strchr performs
this job for us. In this program, we have chosen to dugicate this function to show you
how it works.
This function takes a pointer to a string (string_gtr) and a character to find (find) asits
arguments. It starts with awhile loop that will continue until we find the character we are
looking for (or we are stopped by some other code below).

while (*string_ptr !'= find) {
Next we test to see if we've run out of string. In this case, our pointer (string_gir) points to
the end-of-string character. If we have reached the end of string before finding the
character, we return NULL:

if (*string_gr =="0")

return (NULL);

If we get this far, we have not found what we are looking for, and are not at the end of the
string. So we move the pointer to the next character, and return to the top of the loop to
try again:

++string_ptr;

Our main program reads in asingle line, stripping the newline character fromit. The
function my_strchr is called to find the location of the slash (/).

At this point, last_ptr points to the first character of the last name and first_ptr points to
slash. We then split the string by replacing the slash (/) with an end of string (NUL or \0).
Now last_ptr points to just the last name and first_ptr pointsto anull string. Moving first_ptr
to the next character makes it point to the beginning of the first name.

The sequence of stepsin splitting the string isillustrated in Figure 13-9.

Figure 13-9. Splitting a string

After After Atter
strchr *first ptr = '\0'; first ptr++;

[ast_ptr 8 las1_ptr 8 last_ptr 8

m m om |

i i i

| 1 1

o[B[o]

farst_pir Mrsplk oag

4 | T first_ptr J

o = % St

h h [ho [

n f n

Example 13-10 contains the full program, which demonstrates how pointers and character
arrays can be used for smple string processing.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Example 13-10: split/split.c (continued)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/***** kkkkkk kkhkkkk khkkkk kkkkkk khkkkkk khkhkkkk kkkkkk hkkkikk hkkk

* my_strchr -- Finds a character in a string. *
* Duplicate of a standard library function, *
put here for illustrative purposes *

*

Parameters *
string_ptr -- String to look through. *
find -- Character to find. *
*
Returns *
pointer to 1st occurrence of character *
in gring or NULL for error. *
*kkkkkkkkk kkhkkkkk Kkhkkkk khkkkk khkkkk hhkkkkk khkkhkk hhkkhkkk khkkk */

char *my_strchr(char * string_ptr, char find)

E o B . T I B

while (*string_ptr != find) {
/* Check for end */

if (*string_gr =="0"
return (NULL); /* not found */

++string_ptr;

}
return (string_gr); /* Found */

}

int main()

{
char ling[80]; /* Theinput line*/
char *first_ptr; /* pointer to thefirst name*/
char *last_ptr; /* pointer to the last name*/

fgets(line, sizeof(line), stdin);

[* Get rid of trailing newline */
ling[strlen(line)-1] ="\0';

last_ptr =ling; /* last nameisat beginning of line*/
first_ptr = my_strchr(ling, '/"); /* Find dash */
/* Check for an error */
if (first_ptr == NULL) {
fprintf(stderr,

"Error: Unable to find dash in %s\n", line);
exit (8);

first_ptr ="\0'"; / Zero out the dash */

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

++first_ptr; /* Moveto first character of name */

printf("First:%s Last:%s\n", first_ptr, last_ptr);
return (0);
}
Question 13-2: Example 13-11 is supposed to print out:
Name: tmp1
but instead, we get:
Name: | @$#ds80
(Your results may vary.) Why?
Example 13-11: tmp-name/tmp-name.c

#include <stdio.h>
#include <string.h>

/***** Kkkkkkk kkhkkkk kkkkk kkkkkk khkkkkk khkhkkkk kkkkkk hkkkikk kkhkk

* tmp_name -- Return atemporary filename. *
* *

* Each timethisfunction is called, anew namewill *
* bereturned. *

* *

* Returns *

* Pointer to the new filename. *
*kkkhkkkhkkkhkk Khhhkkhkk khkkhkhkk khhkkkk khhkkhkkk hkkkhkk khkkkhkk khkkkkk kkkk */

char *tmp_name(void)

{

char name[30]; /* Thename we are generating */
datic int sequence=0; /* Sequence number for last digit */

++sequence; /* Moveto the next filename */
strepy(name, "tmp");

/* But inthe sequence digit */
name[3] = sequence + '0';

/* End the string */

name[4] ="\0;
return(name);
}
int main()
{

char *tmp_name(void); /* Get name of temporary file*/

printf("Name: %s\n", tmp_name());
return(0);
}

Pointer sand Structures

In Chapter 12, Advanced Types, we defined a structure for amailing list:
struct mailing {

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

char name[60]; /* last name, first name */

char address1[60];/* two lines of street address */

char address2[60];

char city[40];

char state]2]; /* two-character abbreviation */

longint zip; /* numericzip code */

} lis[MAX_ENTRIES];

Mailing lists must frequently be sorted by name and zip code. We could sort the entries
themselves, but each entry is 226 bytes long. That's a lot of datato move around. One

way around this problem isto declare an array of pointers, and then sort the pointers:
[* Pointer to the data*/
struct mailing *lis_ptrsfMAX_ENTRIES];
int current; /* current mailing list entry */

for (current = O; current = number_of_entries; ++current)
list_ptrgcurrent] = &list[current];

[* Sort list_ptrsby zip code */
Now, instead of having to move a 226-byte structure around, we are moving 4-byte
pointers. Our sorting is much faster. Imagine that you had a warehouse full of big heavy
boxes and you needed to locate any box quickly. Y ou could put them in alphabetical
order, but that would require alot of moving. Instead, you assign each location a number,
write down the name and number on index cards, and sort the cards by name.

Command-Line Arguments

The procedure main actually takes two arguments. They are called argc and argv[2]:
main(int argc, char *argv[])

{
(If you realize that the arguments are in alphabetical order, you can easily remember
which one comes first.)
The parameter argc is the number of arguments on the command line (including the
program name). The array argv contains the actual arguments. For example, if the

program args were run with the command line:
argsthisisatest

then:
agc= 5
argv[0] = "args'
argv[l] = "this’
agv[2] = "is'
argv[3] = "a'
argv[4] = "test"

argv[5] = NULL

NOTE: The UNIX shell expands wildcard characterslike*, ?, and []
before sending the command line to the program. See your sh or csh
manual for details.

Turbo C++ and Borland C++ expand wildcard characters if the file
WILDARG.OBJ is linked with your program. See the manual for details.

Almost all UNIX commands use a standard command-line format. This standard has

carried over into other environments. A standard UNIX command has the form:
command optionsfilel filel file3 ...

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Options are preceded by a dash (-) and are usually asingle letter. For example, the option
-v might turn on verbose mode for a particular command. If the option takes a parameter,
it follows the letter. For example, the option -m1024 sets the maximum number of symbols
to 1024 and -ooutfile sets the output filename to ouitfile.
Let'slook a writing a program that can read the command-line arguments and act
accordingly. This program formats and prints files. Part of the documentation for the
programis given here:

print_file[-v] [-llength] [-oname] [filel] [file2] ...
where:
-V

specifies verbose options; turns on a lot of progress information messages
-llength

sets the page size to length lines (default = 66)
-oname

sets the output file to name (default = print.out)
filel, file2, ...

isalist of filesto print. If no files are specified, the file print.in is printed.

We can use awhile loop to cycle through the command-line options. The actual loop is:
while ((argc > 1) && (argv[1][0] =="-") {

One argument always exists. the program name. The expression (argc > 1) checks for

additional arguments. The first oneis numbered 1. The first character of the first

argument is argv[1][0]. If thisis adash, we have an option.

At the end of the loop is the code:
--argc;
++argv;

}
This consumes an argument. The number of arguments is decremented to indicate one

less option, and the pointer to the first option is incremented, shifting the list to the left
one place. (Note: after the first increment, argv[0] no longer pointsto the program name.)
The switch statement is used to decode the options. Character 0 of the argument isthe
dash (-). Character 1 isthe option character, so we use the expression:
switch (argv[1][1]) {
to decode the option.
The option -v has no arguments; it just causes a flag to be set.
The option -o takes a filename. Rather than copy the whole string, we set the character
pointer out_file to point to the name part of the string. By this time we know the following:
argv[1][0] =-'
argv[1][1] =¢o
argv[1][2] =firg character of the filename
We set out_file to point to the string with the statement:
out_file= &argv[1][2];
The address of operator (&) is used to get the address of the first character in the output
filename. This process is appropriate because we are assigning the address to a character

pointer named out_file.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

The -1 option takes an integer argument. The library function atoi is used to convert the
string into an integer. From the previous example, we know that argv[1][2] is the first
character of the string containing the number. This string is passed to atoi.

Finally, all the options are parsed and we fall through to the processing loop. This merely
executes the function do_file for each file argument. Example 13-12 contains the print
program.

Thisis one way of parsing the argument list. The use of the while loop and switch
statement is simple and easy to understand. This method does have a limitation. The
argument must immediately follow the options. For example, -odata.out will work, but "-o
data.out” will not. An improved parser would make the program more friendly, but the
techniques described here work for ssimple programs.

Example 13-12: print/print.c (continued)

[File: print/print.c]

/***** *kkkkk kkkkkk kkkkk * * % *kk kkkkkk kkkk * kk%k * kkk

* Program: Print *
*

* Purpose: *
* Formatsfilesfor printing. *
* Usage: *

print [optiong] file(s) *

* Options: *

Y Produces verbose messages. *
* -o<file> Sends output to afile *

* (default=print.out). *

* <lines> Setsthenumber of lines/page *

* (default=66). *

*kkkk * * * * * *kkkk * * * * * * * * *kkk */
#include <stdio.h>

#include <stdlib.h>

int verbose = 0; * verbose mode (default = false) */

char *out_file="print.out"; /* output filename*/

char *program_name; /* name of the program (for errors) */
intline_ max=66; /* number of lines per page */

/**-k** *kkkkhkk khkkkkk kkkkk kkk * kk% * kk% * kk% * % * *kkk
* do_file -- Dummy routineto handeafile. *

* *

* Parameter *

* name-- Name of thefileto print. *

*kkkk * * * * * *kkkk * * * * * * * * *kkk */

void do_file(char *name)

printf("Verbose %d Lines %d Input %s Output %s\n",
verbose, line_max, name, out_file);

/***** *kkkkhk kkkkkk kkkkk * *k%k * *kk * *kk * *kk * * *kkkk
* usage -- Tellsthe user how to use thisprogramand *
* i *
exit.
*kkkk * * * * * *kkkk * * * * * * * * *kkk */

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

void usage(void)
{

fprintf(stderr,"Usage is %s [optiong] [file-lig]\n",
program_name);

fprintf(stderr,”Options\n™);
fprintf(stderr," -v verbose\n™);
fprintf(stderr,” -l<number> Number of lines\n");
fprintf(stderr,” -o<name> Set output filename\n™);
exit (8);

}

int main(int argc, char *argv[])

[* save the program name for future use */
program_name = argv[0];

/*

* loop for each option

* Stop if we run out of arguments

* or we get an argument without a dash

*/

while ((argc > 1) && (argv[1][0] =="-") {
/*

* argv[1][1] isthe actual option character
*/
switch (argv[1][1]) {

/*

* -v verbose
*/
case'v"
verbose = 1;
break;
/*
* -o<name> output file
* [0] isthedash
* [1] isthe"o"
* 2] startsthe name
*/
case'o"
out_file= &argv[1][2];
break;
/*
* -[<number> set max number of lines
*/
case 'l
line_max = atoi(&argv[1][2]);
break;
default:
fprintf(stderr,"Bad option %s\n", argv[1]);
usage();
}
/*
* move the argument list up one
* move the count down one
*/
++argy;
--argc;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}

/*

* At this point, all the options have been processed.

* Check to seeif we haveno filesin thelist.

* |f no files exist, we need to process just standard input stream.

*/

if (argc==1){
do_file("print.in");

}ese{

while (argc > 1) {
do file(argv[1]);
++argy;
--argc;

}

}
return (0);
}

Programming Exercises

Exercise 13-1: Write a program that uses pointers to set each element of an array to zero.
Exercise 13-2: Write afunction that takes a single string as its argument and returns a
pointer to the first nonwhite character in the string.

Answers

Answer 13-1: The problem isthat the variable name is atemporary variable. The
compiler allocates space for the name when the function is entered and reclaims the space
when the function exits. The function assigns name the correct value and returns a pointer
to it. However, the function is over, so name disappears and we have a pointer with an
illegal value.

The solution is to declare name static. In this manner, name is a permanent variable and
will not disappear at the end of the function.

Question 13-2: After fixing the function, we try using it for two filenames. Example 13-

13 should print out:

Name: tmp1

Name: tmp2
but it doesn't. What does it print and why?
Example 13-13: tmp2/tmp2.c

#include <stdio.h>
#include <string.h>

/***** Kkkkkkk khkkkk kkkkk kkkkkk khkkkkk khkhkkkk kkkkkk hkkkkk hkhkk

* tmp_name -- Returns atemporary filename. *
* *

* Each timethisfunction is called, anew namewill *
* bereturned. *

* *

* Warning: There should be a warning here, but if we *

* putitin, wewould answer the question. *
* *

* Returns *

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

* Pointer to the new filename. *
kkkkhkkkhkkkhkk khhhkkhkk khkkhkkk khhkkkk khhkkhkkk hkhkkhkk khkkkhkk kkkkkk kkkk */

char *tmp_name(void)

{

datic char name[30]; /* The name we are generating */
datic int sequence=0; /* Sequence number for last digit */

++sequence; /* Moveto the next filename */
grepy(name, "tmp");

/* But in the squence digit */
name 3] = sequence + '0'

/* End the string */

name[4] ="\0;
return(name);
}
int main()
{
char *tmp_name(void); /* get name of temporary file*/
char *namel; /* name of atemporary file*/
char *name2; /* name of atemporary file*/

namel = tmp_name();
name2 = tmp_name();

printf("Namel: %s\n", namel);

printf("Name2: %s\n", name2);

return(0);
}
Answer 13-2: Thefirst call to tmp_name returns a pointer to name. There isonly one name.
The second call to tmp_name changes name and returns a pointer to it. So we have two
pointers, and they point to the same thing, name.
Several library functions return pointers to static strings. A second call to one of these
routines will overwrite the first value. A solution to this problemisto copy the values as

shown below:
char namel[100];
char name2[100];
strepy(namel, tmp_name());
strepy(name2, tmp_name());

This problem is agood illustration of the basic meaning of a pointer; it doesn't create any
new space for data, but just refersto datathat is created elsewhere.

This problem is also a good example of a poorly designed function. The problem is that
the function istricky to use. A better design would make the code less risky to use. For
example, the function could take an additional parameter: the string in which the filename

is to be constructed:
void tmp_name(char *name_to_return);

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

1. This statement is not strictly true for MS-DOS/Windows compilers. Because of the
strange architecture of the 8086 these compilers are forced to use both near pointers (16
bits) and far pointers (32 hits). See your C compiler manual for details.

2. Actually, they can be named anything. However, in 99.9% of programs, they are
named argc and argv. When most programmers encounter the other 0.1%, they curse
loudly, and then change the names to argc and argv.

UNDERSTANDING POINTERS
(for beginners)

INTRODUCTION:

Over a period of several years of monitoring varioustelecommunication conferences on
C | have noticed that one of themost difficult problems for beginners was the
understanding ofpointers. After writing dozens of short messages in attempts toclear up
various fuzzy aspects of dealing with pointers, | set upa series of messages arranged in
"chapters' which | could drawfrom or email to various individuals who appeared to need
help inthis area.

CHAPTER 1: What is apointer?

One of the things beginners in C find most difficult tounderstand is the concept of
pointers. The purpose of thisdocument is to provide an introduction to pointers and their
useto these beginners.

| have found that often the main reason beginners have a problem with pointers is that
they have a weak or minimal feelingfor variables, (as they are used in C). Thus we start
with adiscussion of C variables in general.

A variable in a program is something with a name, the value of which can vary. The
way the compiler and linker handles this is that it assigns a specific block of memory
within the computerto hold the value of that variable. The size of that blockdepends on
the range over which the variable is allowed to vary.For example, on PC's the size of an
integer variable is 2 bytes,and that of along integer is4 bytes. In C the size of a
variable type such as an integer need not be the same on all types of machines.

When we declare a variable we inform the compiler of two things, the name of the
variable and the type of the variable. For example, we declare a variable of type integer
with the name k by writing:

int k;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

On seeing the "int" part of this statement the compiler sets aside 2 bytes (on a PC) of
memory to hold the value of the integer. It also sets up a symbol table. And in that table
it adds the symbol k and the address in memory where those 2 bytes were set aside.

Thus, later if we write:
k=2

at run time we expect that the value 2 will be placed in that memory location reserved for
the storage of the value of k. In asensethere aretwo "values" associated with k, one
being the value of the integer stored there (2 in the above example) and the other being
the "value" of the memory location where it is stored, i.e. the address of k. Some texts
refer to these two values with the nomenclature rvalue (right value, pronounced "are
value") and lvalue (left value, pronunced "el value") respectively.

The Ivalue is the value permitted on the left side of the assignment operator '=' (i.e. the
address where the result of evaluation of the right side endsup). The rvalue isthat which
is on the right side of the as signment statment, the '2' above. Note that rvalues cannot be
used on the left side of the assignment statement. Thus: 2 =Kk; isillegal.

Okay, now consider:

intj, k;
k=2
j=7, <-linel
k=j; <-line2

In the above, the compiler interprets the j in line 1 as the address of the variable j (its
Ivalue) and creates code to copy the value 7 to that address. Inline 2, however, thej is
interpreted as its rvalue (since it is on the right hand side of the assignment operator '=').
That is, here the j refers to the value _stored at the memory location set aside for j, in
thiscase 7. So, the 7 is copied to the address designated by the Ivalue of k.

In al of these examples, we are using 2 byte integers so all copying of rvalues from
one storage location to the other is done by copying 2 bytes. Had we been using long
integers, we would be copying 4 bytes.

Now, let's say that we have a reason for wanting a variable designed to hold an Ivalue
(an address). The size required to hold such a value depends on the system. On older
desk top computers with 64K of memory total, the address of any point in memory can
be contained in 2 bytes. Computers with more memory would require more bytes to hold
an address. Some computers, such as the IBM PC might require special handling to hold
a segment and offset under certain circumstances. The actual size required is not too
important so long as we have a way of informing the compiler that what we want to store
isan address.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Such avariable is called a "pointer variable" (for reasons which will hopefully become
clearer a little later). In C when we define a pointer variable we do so by preceding its
name with an asterisk. In C we aso give our pointer atype which, in this case, refers to
the type of data stored at the address we will be storing in our pointer. For example,
consider the variable definition:

int *ptr;

ptristhe _name_of our variable (just as 'k’ was the name of our integer variable). The
*' informs the compiler that we want a pointer variable, i.e. to set aside however many
bytes is required to store an address in memory. The "int" says that we intend to use our
pointer variable to store the address of an integer. Such a pointer is said to "point to" an
integer. Note, however, that when we wrote "int k;" we did not give k a value.lf this
definiton was made outside of any function many compilers will initialize it to zero.

Simlarly, ptr has no value, that is we haven't stored an address in it in the above
definition. In this case, again if the definition is outside of any function, it is intialized to
avalue #defined by your compiler as NULL. It iscalled aNULL pointer. While in most
cases NULL is #defined as zero, it need not be. That is, different compilers handle this
differently. Also notethat while zero is an integer, NULL need not be.

But, back to using our new variable ptr. Suppose now that we want to store in ptr the
address of our integer variable k. To do thiswe use the unary ‘&' operator and write:

ptr = &Kk;

What the '&' operator does is retrieve the lvalue (address) of k, even though k is on the
right hand side of the assignment operator '=', and copies that to the contents of our
pointer ptr.

Now, ptr is said to "point to" k. Bear with us now, there isonly one more operator we
need to discuss.

The "dereferencing operator” isthe asterisk and it is used as follows:

*ptr=7,
will copy 7 to the address pointed to by ptr. Thusif ptr "points to" (contains the address
of) Kk, the above statement will set the value of k to 7. That is, when we use the *' this
way we are refering to the value of that which ptr is pointing at, not the value of the
pointer itself.

Similarly, we could write:

printf("%d\n" *ptr);

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

to print to the screen the integer value stored at the address pointed to by "ptr".

One way to see how all this stuff fits together would be to run the following program
and then review the code and the output carefully.

#include <stdio.h>

int j, k;
int *ptr;

int main(void)

{
=1L
k=2
ptr = &Kk;
printf("\n");
printf("j has the value %d and is stored at %p\n"j,&]);
printf("k has the value %d and is stored at %op\n",K,&K);
printf("ptr has the value %p and is stored at %op\n",ptr,&ptr);
printf("The value of the integer pointed to by ptr is %d\n",

*ptr);

return O;

A variable is defined by giving it atype and a name (e.g. int k;)

A pointer variable is defined by giving it a type and a name (e.g. int *ptr) where the
asterisk tells the compiler that the variable named ptr is a pointer variable and the type
tells the compiler what type the pointer isto point to (integer in this case).

Once a variable is defined, we can get its address by preceding its name with the unary
'&" operator, asin &Kk.

We can "dereference” a pointer, i.e. refer to the value of that which it points to, by
using the unary "*' operator as
in*ptr.

An"lvalue" of avariable is the value of its address, i.e. where it is stored in memory.
The"rvalue" of avariableis the value stored in that variable (at that address).

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

CHAPTER 2: Pointer types and Arrays

Okay, let's move on. Let us consider why we need to identify the "type" of variable
that a pointer pointsto, asin:
int *ptr;

One reason for doing thisis so that later, once ptr "pointsto” something, if we write:
*ptr = 2;

the compiler will know how many bytes to copy into that memory location pointed to by
ptr. If ptr was defined as pointing to an integer, 2 bytes would be copied, if a long, 4
bytes would be copied. Similarly for floats and doubles the appropriate number

will be copied. But, defining the type that the pointer points to permits a number of other
interesting ways a compiler can interpret code. For example, consider a block in memory
consisting if ten integers in arow. That is, 20 bytes of memory are set aside to hold 10
integer.

Now, let's say we point our integer pointer ptr a the first of these integers.
Furthermore lets say that integer is located a memory location 100 (decimal). What
happens when we write:

ptr + 1,

Because the compiler "knows" this is a pointer (i.e. its value is an address) and that it
pointsto an integer (its current address, 100, is the address of an integer), it adds 2to
ptr instead of 1, so the pointer "points to" the _next_integer_, at memory location 102
Similarly, were the ptr defined as a pointer to along, it would add 4 to it instead of

1. The same goes for other data types such as floats, doubles, or even user defined
datatypes such as structures.

Similarly, since ++ptr and ptr++ are both equivalent to

ptr + 1
(though the point in the program when ptr is incremented may be different), incrementing
apointer using the unary ++ operator, either pre- or post-, increments the address it stores
by the amount sizeof(type) (i.e. 2 for an integer, 4 for along, etc.).

Since a block of 10 integers located contiguously in memory is, by definition, an array
of integers, this brings up an interesting relationship between arrays and pointers.

Consider the following:

int my_array[] ={1,23,17,4,-5,100};

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Here we have an array containing 6 integers. We refer to each of these integers by
means of a subscript to my_array, i.e. using my_array[0] through my_array[5]. But, we
could alternatively access them via a pointer asfollows:

int *ptr;

ptr = &my_array[0]; [* point our pointer at the first
integer inour array */

And then we could print out our array either using the array notation or by
dereferencing our pointer. The following code illustratesthis:

#include <stdio.h>

int my_array[] ={1,23,17,4,-5,100},
int *ptr;

int main(void)
{
inti;
ptr = &my_array[0]; /* point our pointer to the array */
printf("\n\n");
for(i=0;1<6;i++)
{
printf("my_array[%d] = %d ",i,my _array[i]); /*<-- A */
printf("ptr + %d = %d\n",i, *(ptr + i)); [*<--B*/
}
return O;

Compile and run the above program and carefully note lines A and B and that the
program prints out the same values in either case. Also note how we dereferenced our
pointer in line B, i.e. we first added i to it and then dereferenced the the new pointer.
Change line B to read:

printf("ptr + %d = %d\n",i, *ptr++);
and run it again... then change it to:
printf("ptr + %d = %d\n",i, * (++ptr));

and try once more. Each time try and predict the outcome and carefully look at the actual
outcome.

In C, the standard states that wherever we might use & var_name[0] we can replace that
with var_name, thus in our code where we wrote:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

ptr = &my_array[0];
we can write:
ptr = my_array; to achieve the same result.

This leads many texts to state that the name of an array is a pointer. While this is true,
| prefer to mentally think "the name of the array is a _constant_ pointer". Many
beginners(including myself when | was learning) forget that _constant_qualifier. In my
opinon this leads to some confusion. For example, while we can write ptr = my_array;
we cannot write

my_array = ptr;

The reason is that the while ptr is a variable, my_array is a constant. That is, the
location at which the first element of my_array will be stored cannot be changed once
my_array[] has been declared.

Modify the example program above by changing
ptr =&my_array[0]; to ptr=my_array;
and run it again to verify the results are identical.

Now, let's delve a little further into the difference between the names "ptr" and
"my_array" as used above. We said that my_array is a constant pointer. What do we
mean by that? Well, to understand the term "constant” in this sense, let's go back to
our definition of the term "variable". When we define a variable we set aside a spat in
memory to hold the value of the appropriate type. Once that is done the name of the
variable can be interpreted in one of two ways. When used on the left side of the
assignment operator, the compiler interprets it as the memory location to which to move
that which lies on the right side of the assignment operator. But, when used on the right
side of the assignment operator, the name of avariable is interpreted to mean the contents
stored at that memory address set aside to hold the value of that variable.

With that in mind, let's now consider the simplest of constants, asin:

inti, k;

=2

Here, while "i" is a variable and then occupies space in the data portion of memory,
"2" is aconstant and, as such, instead of setting aside memory in the data segment, it is

imbedded directly in the code segment of memory. That is, while writing something like
k =1i; tellsthe compiler to create code which at run time will look a memory location &i

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

to determine the value to be moved to k, code created by i =2; simply puts the '2' in the
code and there is no referencing of the data segment.

Similarly, in the above, since "my_array" is a constant, once the compiler establishes
where the array itself is to be stored, it "knows' the address of my array[0] and on
seeing:

ptr = my_array;

it simply uses this address as a constant in the code segment and there is no referencing
of the data segment beyond that.

WEell, that's a lot of technical stuff to digest and | don't expect a beginner to understand
all of it on first reading. With time and experimentation you will want to come back and
re-read the first 2 chapters. But for now, let's move on to the relationship between
pointers, character arrays, and strings.

CHAPTER 3: Pointersand Strings

The study of strings is useful to further tie in the relationship between pointers and
arrays. It also makes it easy to illustrate how some of the standard C string functions can
be implemented. Finally it illustrates how and when pointers can and should be passed to
functions.

In C, strings are arrays of characters. This is not necessarily true in other languages.
In Pascal or (most versions of) Basic, strings are treated differently from arrays. To start
off our discussion we will write some code which, while preferred for illustrative
purposes, you would probably never write in an actual program. Consider, for example:

char my_string[40Q];

my_string[0] = T";
my_string[1] ='€;
my_string[2] = 'd"
my_string[3] ="\0",

While one would never build a string like this, the end result is a string in that it is an
array of characters _terminated_with_a nul_character_. By definition, in C, a string
is an array of characters terminated with the nul character. Note that "nul" is _not_ the
sameas"NULL". The nul refersto a zero asis defined by the escape sequence \O'. That
is it occupies one byte of memory. The NULL, on the other hand, is the value of an
uninitialized pointer and pointers require more than one byte of storage. NULL is
defined in a header file in your C compiler, nul may not be #defined at all.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Since writing the above code would be very time consuming, C permits two alternate
ways of achieving the same thing. First, one might write:

char my_string[40] ={'T', ‘¢, 'd', \0',};
But this also takes more typing than is convenient. So, C permits:
char my_string[40] ="Ted";

When the double quotes are used, instead of the single quotes as was done in the
previous examples, the nul character (\O') is automatically appended to the end of the
string.

In al of the above cases, the same thing happens. The compiler sets aside an
contiguous block of memory 40 bytes long to hold characters and initialized it such that
the first 4 characters are Ted\O.

Now, consider the following program:

------------------ program 3.1----------=--==-mmmmmmm oo
#include <stdio.h>

char strA[80] ="A string to be used for demonstration purposes’;
char strB[8(];

int main(void)
{
char *pA; /* apointer to type character */
char *pB; /* another pointer to type character */
puts(strA); /* show string A */
pA = strA; /* point pA at string A */
puts(pA); /* show what pA ispointing to */
pB =4rB; /* point pB at string B */
putchar(\n); /* move down one line on the screen */
while(*pA 1="0") /* line A (seetext) */

{

*pB++ =*pA++; [* line B (seetext) */
}
pB ="0 / line C (seetext) */
puts(strB); [* show <trB on screen */
return O;

Inthe above we start out by defining two character arrays of 80 characters each. Since
these are globally defined, they are initialized to all \O'sfirst. Then, strA hasthe first 42

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

charactersinitialized to the string in quotes.

Now, moving into the code, we define two character pointers and show the string on
the screen. We then "point" the ponter pA at strA. That is, by means of the assignment
statement we copy the address of strA[Q] into our variable pA. We now use puts() to
show that which is pointed to by pA on the screen. Consider here that the function
prototype for puts() is:

int puts(const char *s);

For the moment, ignore the "const”. The parameter passed to puts is a pointer, that is
the value_of apointer (since all parametersin C are passed by value), and the value of a
pointer is the address to which it points, or, simply, an address. Thus
when we write:

puts(strA); as we have seen, we are passing the
address of strA[0]. Similarly, when we write:

puts(pA); we are passing the same address, since
we have set pA = strA;

Given that, follow the code down to the while() statement on line A. Line A states:

While the character pointed to by pA (i.e. *pA) is not a null character (i.e. the
terminating \0"), do the following:

line B states. copy the character pointed to by pA to the space pointed to by pB, then
increment pA so it pointsto the next character and pB so it pointsto the next space.

Note that when we have copied the last character, pA now points to the terminating nul
character and the loop ends. However, we have not copied the nul character. And, by
definition a string in C _must_ be nul terminated. So, we add the nul character with line
C.

It is very educational to run this program with your debugger while watching strA,
strB, pA and pB and single stepping through the program. It is even more educational if
instead of simply defining strB[] as has been done above, initialize it also with something
like:
strB[80] ="12345678901234567890123456789012345678901234567890

where the number of digits used is greater than the length of strA and then repeat the
single stepping procedure while watching the above variables. Give these things atry!

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Of course, what the above program illustrates is a simple way of copying a string.
After playing with the above until you have a good understanding of what is happening,
we can proceed to creating our own replacement for the standard strcpy() that comes
with C. It might look like:

char *my_strcpy(char *destination, char * source)
{

char *p = dedtination

while (*source !="0)

{

*p++ = *sourcet++,

}

*p="04

return destination.
}

In this case, | have followed the practice used in the standard routine of returning a
pointer to the destination.

Again, the function is designed to accept the values of two character pointers, i.e.
addresses, and thus in the previous program we could write:

int main(void)

{
my_strcpy(strB, strA);
puts(strB);

}

| have deviated dlightly from the form used in standard C which would have the
prototype:

char *my_strcpy(char *destination, const char * source);

Here the "const” modifier is used to assure the user that the function will not modify
the contents pointed to by the source pointer. You can prove this by modifying the
function above, and its prototype, to include the "const” modifier as shown. Then,
within the function you can add a statement which attempts to change the contents of that
which is pointed to by source, such as:

*source = X'

which would normally change the first character of the string to an X. The const
modifier should cause your compiler to catch thisasan error. Try it and see.

Now, let's consider some of the things the above examples have shown us. First off,
consider the fact that *ptr++ is to be interpreted as returning the value pointed to by ptr

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

and then incrementing the pointer value. On the other hand, note that this has to do with
the precedence of the operators. Were we to write (*ptr)++ we would increment, not the
pointer, but that which the pointer points to! i.e. if used on the first character of the
above example string the T' would be incremented to a'U’. You can write some simple
example code to illustrate this.

Recall again that a string is nothing more than an array of characters. What we have
done above is deal with copying an array. It happensto be an array of characters but the
technique could be applied to an array of integers, doubles, etc. In those cases, however,
we would not be dealing with strings and hence the end of the array would not be
_automatically _ marked with a special value like the nul character. We could implement
aversion that relied on a special value to identify the end. For example, we could copy an
array of postive integers by marking the end with a negative integer. On the other hand,
it is more usual that when we write a function to copy an array of items other than strings
we pass the function the number of items to be copied as well as the address of the array,
e.g. something like the following prototype might indicate:

void int_copy(int *ptrA, int *ptrB, int nbr);

where nbr is the number of integers to be copied. You might want to play with this idea
and create an array of integers and see if you can write the function int_copy() and make
it work. Note that this permits using functions to manipulate very large arrays. For
example, if we have an array of 5000 integers that we want to manipulate with a function,
we need only pass to that function the address of the array (and any auxiliary information
such as nbr above, depending on what we are doing). The array itself does not_ get
passed, i.e. the whole array is not copied and put on the stack before calling the function,
only itsaddress is sent.

Note that this is different from passing, say an integer, to a function. When we pass an
integer we make a copy of the integer, i.e. get its value and put it on the stack. Within the
function any manipulation of the value passed can in no way effect the original integer.
But, with arrays and pointers we can pass the address of the variable and hence anipulate
the values of of the original variables.

CHAPTER 4. Moreon Strinas

Well, we have progressed quite aways in ashort time! Let's back up a little and look at
what was done in Chapter 3 on copying of strings but in adifferent light. Consider the
following function:

char *my_strcpy(char dest[], char source]])

{
inti =0;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

while (source|i] !="0")

{
dest[i] = source[i];
i++;

}

dest[i] ="\0';

return dest;

}

Recall that strings are arrays of characters. Here we have chosen to use array notation
instead of pointer notation to do the actual copying. The results are the same, i.e. the
string gets copied using this notation just as accurately as it did before. This raises some
interesting points which we will discuss.

Since parameters are passed by value, in both the passing of a character pointer or the
name of the array as above, what actually gets passed is the address of the first element of
each array. Thus, the numerical value of the parameter passed is the same whether we
use a character pointer or an array name as a parameter. This would tend to imply that
somehow:

sourceli] isthesameas *(p+i);

In fact, thisistrue, i.e wherever one writes &[i] it can be replaced with *(a + i) without
any problems. In fact, the compiler will create the same code in either case.
Now,looking

at this last expression, part of it.. (a+ 1) isasimple addition using the + operator and the
rules of ¢ state that such an expression iscommutative. That is (a+ i) isidentical to

(i +d). Thuswe could write*(i + @) just aseasily as*(a+).

But *(i + @ could have come fromi[a] ! From al of this comes the curious truth that
if:

char g/20];

inti;

writing &3] ='X'; isthe same aswriting

3[a] =X

Try it! Set up an array of characters, integers or longs,
etc. and assigned the 3rd or 4th element a value using the conventional approach and then
print out that value to be sure you have that working. Then reverse the array notation as |
have done above. A good compiler will not balk and the results will be identical. A
curiosity... nothing more!

Now, looking at our function above, when we write:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

dest[i] = sourcH[i];
this gets interpreted by C to read:
*(dest +1i) = *(source +i);

But, this takes 2 additions for each value taken on by i. Additions, generally speaking,
take more time than incrementations (such as those done using the ++ operator asin i++).
This may not be true in modern optimizing compilers, but one can never be sure. Thus,
the pointer version may be a bit faster than the array version.

Another way to speed up the pointer version would be to change:

while (*source!=\0) tosmply while (*source)

since the value within the parenthesis will go to zero (FALSE) at the same time in either
case.

At this point you might want to experiment a bit with writing some of your own
programs using pointers. Manipulating strings is a good place to experiment. You
might want to write your own versions of such standard functions as:

srlen();
sreat();
srchr();
and any others you might have on your system.

We will come back to grings and their manipulation through pointers in a future
chapter. For now, let's move on and discuss structures for a bit.

CHAPTER 5: Pointers and Structures

As you may know, we can declare the form of a block of data containing different data
types by means of a structure declaration. For example, a personnel file might contain
structures which look something like:

sruct tag{

char Iname[20]; [* last name */

char fname[2(]; [* first name */

int age; I* age*/
float rate; [* e.g. 12.75 per hour */
¥

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Let's say we have an bunch of these structures in a disk file and we want to read each
one out and print out the first and last name of each one so that we can have a list of the
people in our files. The remaining information will not be printed out. We will want to
do this printing with a function call and pass to that function a pointer to the structure at
hand. For demonstration purposes | will use only one structure for now. But realize the
goal is the writing of the function, not the reading of the file which, presumably, we
know how to do.

For review, recall that we can access structure members with the dot operator asin:

--------------- program 5.1 ---------==-------
#include <stdio.h>
#include <string.h>

struct tag{

char Iname[20]; /* last name */

char frame[20]; /* first name */

int age; I* age*/
float rate; [* e.g. 12.75 per hour */
¥

struct tag my_struct; /* declare the structure m_struct */

int main(void)

{
srepy(my_struct.Iname,” Jensen’);
srepy(my_struct.fname," Ted");
printf("\n%s",my_struct.fname);
printf("%s\n",my_struct.Iname);
return O;

Now, this particular structure is rather small compared to many used in C programs.
To the above we might want to add:

date of hire;

date of last_raise;
last_percent_increase;
emergency_phone;
medical_plan;
Social_S Nbr;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Now, if we have a large number of employees, what we want to do manipulate the data
in these structures by means of functions. For example we might want afunction print out
the name of any structure passed to it. However, in the original C (Kernighan & Ritchie)
it was not possible to pass a gructure, only a pointer to a structure could be passed. In
ANSI C, it is now permissible to pass the complete structure. But, since our goal here is
to learn more about pointers, we won't pursue that.

Anyway, if we pass the whole structure it means there must be enough room on the
stack to hold it. With large structures this could prove to be a problem. However,
passing a pointer uses a minimum amount of stack space.

In any case, since this is a discussion of pointers, we will discuss how we go about
passing a pointer to astructure and then using it within the function.

Consider the case described, i.e. we want a function that will accept as a parameter a
pointer to a structure and from within that function we want to access members of the
structure.

For example we want to print out the name of the employee in our example structure.

Okay, so we know that our pointer is going to point to a structure declared using struct
tag. We define such a pointer with the definition:

druct tag *<_ptr;
and we point it to our example structure with:
g _ptr = &my_struct;

Now, we can access a given member by de-referencing the pointer. But, how do we de-
reference the pointer to a structure?

Well, consider the fact that we might want to use the pointer to set the age of the
employee. We would write:

(*st_ptr).age =63,

Look at this carefully. It says, replace that within the parenthesis with that which
st_ptr points to, which is the structure my_struct. Thus, this breaks down to the same as
my_struct.age.

However, this is a fairly often used expression and the designers of C have created an
alternate syntax with the same meaning which is:

s ptr->age =63,

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

With that in mind, look at the following program:

------------ program 5.2 --------------

#include <stdio.h>

#include <string.h>

struct tag{ [* the structure type */
char Iname[20]; [* last name */
char fname[20]; [* first name*/
int age; I* age*/
float rate; [* e.g. 12.75 per hour */
¥

struct tag my_struct; [* define the structure */
void show_name(struct tag *p); /* function prototype */

int main(void)

{
sruct tag *st_ptr; [* apointer to a structure */
g _ptr = &my_struct; [* point the pointer to my_struct */
srepy(my_struct.Iname,” Jensen’);
srepy(my_struct.fname,"Ted");
printf("\n%s",my_struct.fname);
printf("%s\n",my_struct.Iname);
my_struct.age = 63;
show_name(st_ptr); [* passthe pointer */
return O;

void show_name(struct tag *p)

{
printf("\n%s", p->fname); /* p pointsto astructure */
printf("%s", p->Iname);
printf("%d\n", p->age);

Again, thisisalot of information to absorb at one time.
The reader should compile and run the various code snippets and using a debugger
monitor things like my_struct and p while single stepping through the main and following
the code down into the function to see what is happening.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

CHAPTER 6: _Somemoreon Strings, and
Arrays of Strings

WEell, let's go back to strings for a bit. In the following all assignments are to be
understood as being global, i.e. made outside of any function, including main.

We pointed out in an earlier chapter that we could write:
char my_string[40] = "Ted";

which would allocate space for a40 byte array and put the string in the first 4 bytes (three
for the charactersin the quaes and a 4th to handle the terminating "\O'.

Actually, if all we wanted to do was store the name "Ted" we could write:
char my_name[] ="Ted";

and the compiler would count the characters, leave room for the nul character and store
the total of the four charactersin memory the location of which would be returned by the
array name, in this case my_string.

In some code, instead of the above, you might see:
char *my_name="Ted";

which is an alternate approach. Isthere a difference between these? The answer is.. yes.
Using the array notation 4 bytes of storage in the static memory block are taken up, one
for each character and one for the nul character. But, in the pointer notation the same 4
bytes required, _plus_N bytes to store the pointer variable my _name (where N depends
on the system but is usually a minimum of 2 bytes and can be 4 or more).

In the array notation, my_name is a constant (not a variable). In the pointer notation
my_nameisavariable. Astowhichisthe better method, that depends on what you are
going to do within the rest of the program.

Let's now go one step further and consider what happens if each of these definitions
are done within a function as opposed to globally outside the bounds of any function.

void my_function_A(char *ptr)

{
char g[] = "ABCDE";

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}

void my_function_B(char *ptr)

{
char *cp ="ABCDE";

Here we are dealing with automatic variables in both cases. In my_function_A the
automatic variable is the character array g]. In my_function_B it is the pointer cp. While
C is designed in such a way that a stack is not required on those processors which don't
use them, my particular processor (80286 has a stack. | wrote a smple program
incorporating functions similar to those above and found that in my_function A the 5
characters in the string were all stored on the stack. On the other hand, iny_function_B,
the 5 characters were stored in the data space and the pointer was stored on the stack.

By making &[] static | could force the compiler to place the 5 characters in the data
space as opposed to the stack. | did this exercise to point out just one more difference
between dealing with arrays and dealing with pointers. By the way, array initialization of
automatic variables as | have done in my_function_A was illegal in the older K&R C and
only "came of age" in the newer ANSI C. A fact that may be important when one is
considering portabilty and backwards compatability.

As long as we are discussing the relationship/differences between pointers and arrays,
let's move on to multi-dimensional arrays. Consider, for example the array:

char multi[5][10];
Just what doesthis mean? Well, let's consider it in the following light.

char multi[5][10];

NNANNNNNNNNNNN

If we take the first, underlined, part above and consider it to be a variable in its own
right, we have an array of 10 characters with the "name" multi[5]. But this name, in
itself, implies an array of 5 somethings. In fact, it means an array of five 10 character
arrays. Hence we have an array of arrays. In memory we might think of this as looking
like:

multi[0] = "0123456789
multi[1] = "abcdefghij"
multi[2] = "ABCDEFGHIJ"
multi[3] = "9876543210
multi[4] = "JHGFEDCBA"

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

with individual elements being, for example:

multi[0][3] = '3
multi[1][7] = b
multi[4][0] = J

Since arrays are to be contiguous, our actual memory block for the above should look
like:

"0123456788bcdefghijABCDEFGHIJ9876543210 HGFEDCBA"

Now, the compiler knows how many columns are present in the array so it can
interpret multi + 1 as the address of the 'a’ in the 2nd row above. That is, it adds 10, the
number of columns, to get this location. If we were dealing with integers and an array
with the same dimension the compiler would add 10* sizeof(int) which, on my machine,
would be 20. Thus, the address of the "9" in the 4th row above would be & multi[3][O] or
*(multi + 3) in pointer notation. To get to the content of the 2nd element in row 3 we add
1 to this address and dereference the result asin

((multi + 3) + 1)
With alittle thought we can see that:

((multi + row) + col) and
multi[row][col] yield the same results.

The following program illustrates this using integer arrays
instead of character arrays.

------------------- program 6.1 ----------------------
#include <stdio.h>

#define ROWS 5
#define COLS 10

int multifROWS][COLS];

int main(void)
{
int row, col;
for (row = 0; row < ROWS; row++)
for(col = 0; col < COLS; col++)
multi[row][col] = row*col;
for (row = 0; row < ROWS; row++)
for(col = 0; col < COLS; col++)

{

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

printf("\n%d ",multi[row][col]);
printf("%d ",* (* (multi + row) + col));
}

return O;

Because of the double de-referencing required in the pointer version, the name of a 2
dimensional array is said to be a pointer to a pointer. With a three dimensional array we
would be dealing with an array of arrays of arrays and a pointer to a pointer to a pointer.
Note, however, that here we have initially set aside the block of memory for the array by
defining it using array notation. Hence, we are dealing with an constant, not a variable.
That iswe are talking about afixed pointer not a
variable pointer. The dereferencing function used above permits us to access any element
in the array of arrays without the need of changing the value of that pointer (the address
of multi[O][O]
as given by the symbol "multi").

EPILOG:

| have written the preceding material to provide an introduction to pointers for
newcomers to C. In C, the more one understands about pointers the greater flexibility
one has in the writing of code. The above has just scratched the surface of the subject. In
time | hope to expand on this material. Therefore, if you have questions, comments,
criticisms, etc. concerning that which has been presented, | would greatly appreciate your
contacting me using one of the mail addresses cited in the
Introduction.
Q: Okay, I'mkindanew to C, and | was reading that this following example
Q: would not be good to do: main() {
Q: int *iptr;
Q: *iptr = 421;
Q: printf("*iptr = %d\n" *iptr);
Q:}
Q: It was saying that you could get away with it, but in larger programs it

Q: can be a serious problem. It says that it is an uninitialized pointer.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

A: Contrary to what they (the book) told you, you CANNOT get away with

uninitialized pointers, period.

Q: How do you initialize pointers?

A: Someinsights:

1. A variable, any variable, has, amoing others, two properties called the

rvalue and the lvalue. 'I'and 'r' stand for 'left' and 'right’. What is

the meaning of these properties. Consider assignment:

intl=2;

intr=3;

l=r;, <o

Conceptually speaking, what basiccaly happens is that the compiler takes
the address of 'r' and retrieves the value stored at that address. To

obtain the address, it uses the rvalue of 'r'. Now it is clear that

rvalues are used at the right hand side of the assignment operator to

obtain the address to use.

Then, the value retrieved from 'r' is put in the Ivalue of 'I', then,

'I'-s rvalue is used to obtain the address where to sore that value.

Definitions:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

rvalue the attribute of avariable that holds the address where
that particular variable is stored.
Ivalue the attribute of avariable that holds the value of the

variable.

Conclusions;

- If you never assign avalue to avariables lvalue, that Ivalue is
undefined!

- The effect of using undefined Ivalues is undefined, possibly
harmful, and sometimes interesting ;-)

- A variable isatuple(address, value). See "Aside".

- Assigning to rvalues isthe job of the compiler.

- Assigning to Ivaluesis the job of the programmer.

Aside:

Infact, avariable istuple(storage, scope, type, address, value):

dorage : whereisit stored, for example data, sack, heap...
scope : who can see us, for example global, local...

type : what isour type, for example int, int*...

address : where are we located

value : what isour value

2. A pointer is not a second class citizen. It has exactly the same proper-

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

ties as any other variable. The fun thing isthat a pointers lvalue is
actually the rvalue of another variable, namely the variable it points
to. That meansthat before we can use that Ivalue, we first must assign
acorrect value to it, because if we do not, that Ivalue is undefined.

That is where the referencing operator '&'. comes into play. Consider:

int v=3;

int* p;

p=&v; <----

What the &-operator does is a modification of what happens at the left
side of the assignment. Basically it tells the compiler not to use 'v'-s
rvalue to obtain the address where the Ivalue of 'v' is stored, but it
tellsit to use the rvalue of 'v' as the right hand side of the

assignment. It then proceeds as normal, assigning the value obtained to
the Ivalue of p and storing that at the address contained in the rvalue

of p.

What we have now isap with an rvalue that is equal to the address where
p is stored, and an lvalue that is equal to the address where 'v' is

sored. Bingo! We initialized a pointer.

Conclusion:

- The meaning of the symbol '&" in the context of avariable is

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

"take-the-address-instead-of-the-value"

3. Now, al we need is a method to obtain the Ivalue of 'v' through the
pointer p. That is where dereferencing operator *' comes into play.

Consider:

int n;
int v=3;

int* p=&v;

n="*p; <----

Now what happens, is that the *-operator tells the compiler to use the
Ivalue of p to use as an rvalue to obtain the proper Ivalue. What happens

exactly is:

- Takethervalue of p.
- Obtain the Ivalue of p.
- Usethe lvalue of p as an rvalue to obtain the Ivalue of the

variable pointed to.

We call this process "dereferencing’, that is, the pointer refersto
another variable (possibly another pointer) and we follow that reference

to arrive at the place we want to be.

Conclusion:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

- The meaning of the symbol *' in the context of pointersis

"use-my-value-as-address".

WEell, the answer isthere. To intialize a pointer, we must point it to
another variable by means of the &-operator. To obtain the value of the
variable pointed to, we use the *-operator. However, keep in mind that
operators & and * can have a different meaning in other contexts (notably

bitwise AND and multiplication).

TABLE OF CONTENTS
Preface
Introduction
Chapter 1. What isa Pointer?
Chapter 2: Pointer Types and Arrays.
Chapter 3: Pointersand Strings
Chapter 4: Moreon Strings
Chapter 5: Pointersand Structures
Chapter 6: Moreon Strings and Arrays of Strings
Chapter 7: More on Multi-Dimensional Arrays
Chapter 8: Pointersto Arrays
Chapter 9: Pointers and Dynamic Allocation of Memory

Chapter 10: Pointersto Functions

Epilog

->
PREFACE

This document is intended to introduce pointers to beginning
programmersin the C programming language. Over several years of
reading and contributing to various conferences on C including
those on the FidoNet and UseNet, | have noted a large number of
newcomers to C appear to have a difficult timein grasping the
fundamentals of pointers. | therefore undertook the task of

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

trying to explain them in plain language with lots of examples.

Thefirst version of this document was placed in the public
domain, asisthisone. It was picked up by Bob Stout who
included it asafile called PTR-HELP.TXT in hiswidely
distributed collection of SNIPPETS. Since that release, | have
added a significant amount of material and made some minor
correctionsin the origina work.

Acknowledgements:

There are so many people who have unknowingly contributed to
thiswork because of the questions they have posed in the FidoNet
C Echo, or the UseNet Newsgroup comp.lang.c, or several other
conferences in other networks, that it would be impossible to
list them al. Special thanks go to Bob Stout who was kind
enough to include the first version of this material in his
SNIPPETSfile.

About the Author:

Ted Jensen isaretired Electronics Engineer who worked asa
hardware designer or manager of hardware designersin thefield
of magnetic recording. Programming has been a hobby of his off
and on since 1968 when he learned how to keypunch cards for
submission to be run on amainframe. (The mainframe had 64K of
magnetic core memory!).

Use of this Material:

Everything contained herein ishereby released to the Public
Domain. Any person may copy or distribute this material in any
manner they wish. The only thing | ask isthat if this material
isused asateaching aid in aclass, | would appreciateit if it
were distributed in its entirety, i.e. incuding all chapters,
the preface and the introduction. | would also appreciateit if
under such circumstances the instructor of such a class would
drop me anote at one of the addresses below informing me of
this. | have written this with the hope that it will be useful
to others and since I'm not asking any financial remuneration,
the only way | know that | have at |east partially reached that
goal isvia feedback from those how find this material useful.

By the way, you needn't be an instructor or teacher to
contact me. | would appreciate ancte from _anyone _who finds
the material useful, or who has constructive criticism to offer.
I'm also willing to answer questions submitted by mail.

Ted Jensen tjensen@netcom.com
P.O. Box 324 1-415-365-8452
Redwood City, CA 94064

Dec. 1995

->

INTRODUCTION

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

If oneisto be proficient in the writing of codein the C
programming language, one must have a thorough working knowledge
of how to use pointers. Unfortunately, C pointers appear to
represent a stumbling block to newcomers, particularly those
coming from other computer languages such as Fortran, Pascal or
Basic.

To ad those newcomers in the understanding of pointers| have
written the following material. To get the maximum benefit from
thismaterial, | fed it isimportant that the user be ableto
run the code in the various listings contained in the article. |
have attempted, therefore, to keep all code ANSI compliant so
that it will work with any ANSI compliant compiler. And | have
tried to carefully block the code within the text so that with
the help of an ASCII text editor one can copy a given block of
codeto anew file and compileit on their system. | recommend
that readersdo thisasit will help in understanding the
material.

->
CHAPTER 1: What isa pointer?

One of the things beginnersin C find most difficult to
understand isthe concept of pointers. The purpose of this
document isto provide an introduction to pointers and their use
to these beginners.

| have found that often the main reason beginners have a
problem with pointersisthat they have a weak or minimal feeling
for variables, (asthey areused in C). Thuswe start with a
discussion of C variablesin general.

A variablein a program is something with a name, the value
of which can vary. The way the compiler and linker handles this
isthat it assigns a specific block of memory within the computer
to hold the value of that variable. The size of that block
depends on the range over which the variable is allowed to vary.
For example, on PC'sthe sSze of an integer variable is 2 bytes,
and that of along integer is4 bytes. In Cthesizeof a
variable type such as an integer need not be the same on al
types of machines.

When we declare a variable we inform the compiler of two
things, the name of the variable and the type of the variable.
For example, we declare a variable of type integer with the name
k by writing:

intk;

On seeing the "int" part of this statement the compiler sets
aside 2 bytes (on a PC) of memory to hold the value of the
integer. It also setsup asymbol table. And in that table it
adds the symbol k and the rel ative address in memory where those
2 bytes were set aside.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Thus, later if we write:
k=2

at run time we expect that the value 2 will be placed in that
memory location reserved for the sorage of thevalueof k. InC
we refer to a variable such astheinteger k asan "object”.

In a sense there are two "values' associated with the object
k, one being the value of the integer stored there (2 in the
above example) and the other being the "value" of the memory
location whereit is stored, i.e. the address of k. Some texts
refer to these two values with the nomenclature rvaue (right
value, pronounced "are value") and lvalue (left value, pronounced
"el value") respectively.

In some languages, the lvalue is the value permitted on the
left side of the assignment operator '=' (i.e. the address where
theresult of evaluation of theright side endsup). Thervalue
isthat which is on theright side of the assignment statement,
the'2 above. Rvalues cannot be used on the left side
of the assignment statement. Thus: 2=k; isillegal.

Actually, the above definition of "lvalue" is somewhat
modified for C. According to K&R-2 (page 197): [1]

"An_object_isanamedregion of storage; an _Ivalue_isan
expression referring to an object.”

However, at this point, the definition originally cited aboveis
sufficient. Aswe become more familiar with pointers we will go
into more detail on this.

Okay, now consider:

intj, k;
k=2
j=7, <-linel
k=j; <--line2

In the above, the compiler interpretsthej in line 1 asthe
address of the variable j (its lvaue) and creates code to copy
the value 7 to that address. In line 2, however, thej is
interpreted asitsrvalue (sinceit is on theright hand side of
the assignment operator '="). That is, herethe| referstothe
value _stored_at the memory location set aside for |, in this
case 7. So, the 7 is copied to the address designated by the
Ivalue of k.

Inall of these examples, we are using 2 byte integers so al
copying of rvalues from one storage location to the other is done
by copying 2 bytes. Had we been using long integers, we would be
copying 4 bytes.

Now, let's say that we have areason for wanting a variable

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

designed to hold an Ivalue (an address). The szerequired to

hold such a value depends on the system. On older desk top
computers with 64K of memory total, the address of any point in
memory can be contained in 2 bytes. Computers with more memory
would require more bytes to hold an address. Some computers,

such asthe IBM PC might require specia handling to hold a
segment and offset under certain circumstances. The actual size
required isnot too important so long as we have a way of

informing the compiler that what we want to storeis an address.

Such avariableis called a "pointer variable" (for reasons
which hopefully will become clearer alittlelater). In C when
we define a pointer variable we do so by preceding its name with
an asterisk. In C we also give our pointer atype which, in this
case, refersto thetype of data stored at the address we will be
storing in our pointer. For example, consider the variable
declaration:

int * ptr;

ptr isthe _name_ of our variable (just as 'k’ was the name
of our integer variable). The ™" informs the compiler that we
want a pointer variable, i.e. to set aside however many bytesis
required to store an addressin memory. The "int" says that we
intend to use our pointer variable to store the address of an
integer. Such apointer is said to "point to" an integer.
However, note that when we wrote "int k;" we did not give k avalue.
If this definition was made outside of any function many compilers
will initidlizeit to zero. Similarly, ptr hasno value, that is
we haven't stored an address in it in the above declaration. In
this case, again if the declaration is outside of any function,
itisinitialized to a value #defined by your compiler as NULL. It
iscalled aNULL pointer. Whilein most cases NULL is #defined
aszero, it need not be. That is, different compilershande
thisdifferently. Alsowhilezeroisaninteger, NULL
need not be. However, the valuethat NULL actually has
internally is of little consequence to the programmer since at
the source code level NULL == 0 isguaranteed to evaluateto
trueregardless of theinternal value of NULL.

But, back to using our new variable ptr. Suppose now that we
want to store in ptr the address of our integer variable k. To
do this we use the unary '&" operator and write:

ptr = &k;

What the'&' operator doesis retrieve the lvalue (address)
of k, even though k ison the right hand side of the assignment
operator '=', and copies that to the contents of our pointer ptr.
Now, ptrissaid to "point to" k. Bear with usnow, thereis
only one more operator we need to discuss.

The "dereferencing operator” isthe asterisk and it is used
asfollows:

*ptr=7,

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

will copy 7 to the address pointed to by ptr. Thusif ptr
"pointsto” (contains the address of) k, the above statement will
set thevalue of kto 7. That is, when we use the *** this way
we are referring to the value of that which ptr is pointing

to, not the value of the pointer itself.

Similarly, we could write:
printf("%d\n",*ptr);

to print to the screen the integer value stored at the address
pointed to by "ptr".

Oneway to see how all this stuff fits together would beto
run the following program and then review the code and the output
carefully.

#include <stdio.h>

intj, k;
int *ptr;

int main(void)

t
=1
k=2
ptr = &Kk;
printf("*\n");
printf("j hasthe value %d and is stored at %p\n",j,&]);
printf("k has the value %d and is stored at %op\n” k,&k);
printf("ptr has the value %p and is stored at %op\n",ptr,& ptr);
printf("The value of the integer pointed to by ptr is %d\n",

*ptr);

return O;

}

Toreview:

A variableis declared by giving it atype and aname (e.g.
intk;)

A pointer variable is declared by giving it atype and aname
(e.g. int *ptr) where the asterisk tellsthe compiler that
the variable named ptr is a pointer variable and the type
tellsthe compiler what type the pointer isto point to
(integer inthiscase).

Onceavariable is declared, we can get its address by
preceding its name with the unary '&' operator, asin &Kk.

We can "dereference" a pointer, i.e. refer to the value of

that which it points to, by using the unary *' operator as
in *ptr.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

An"lvalue' of avariableisthevalue of itsaddress, i.e.
whereit isstored in memory. The"rvalue' of avariableis
the value stored in that variable (at that address).

Referencesin Chapter 1:

[1] "The C Programming Language® 2nd Edition
B. Kernighan and D. Ritchie
Prentice Hall
ISBN 0-13-1103628

->

CHAPTER 2: Pointer types and Arrays

Okay, let'smove on. Let us consider why we need to identify
the "type" of variable that a pointer pointsto, asin:

int *ptr;

Onereason for doing thisis so that later, once ptr "points
to" something, if we write:

*ptr=2,

the compiler will know how many bytesto copy into that memory
location pointed to by ptr. If ptr was declared as pointing to an
integer, 2 bytes would be copied, if along, 4 bytes would be
copied. Similarly for floats and doubles the appropriate number
will be copied. But, defining the type that the pointer points

to permits anumber of other interesting ways a compiler can
interpret code. For example, consider a block in memory
consisting if ten integersin arow. That is, 20 bytes of memory
are set asideto hold 10 integers.

Now, |et's say we point our integer pointer ptr at the first
of theseintegers. Furthermore lets say that integer islocated
at memory location 100 (decimal). What happens when we write:

ptr + 1,

Because the compiler "knows' thisisapointer (i.e. its
valueisan address) and that it pointsto an integer (its
current address, 100, isthe address of an integer), it adds 2 to
ptr instead of 1, so the pointer "pointsto” the _next
integer, a memory location 102. Similarly, were the ptr
declared as a pointer to along, it would add 4 to it instead of
1. Thesame goesfor other data types such as floats, doubles,
or even user defined data types such as structures. Thisis
obvioudy not the same kind of "addition" that we normally think
of. InCitisreferred to as addition using "pointer
arithmetic", aterm which we will come back to later.

Similarly, since ++ptr and ptr++ are both equivalent to

ptr + 1 (though the point in the program when ptr is incremented
may be different), incrementing a pointer using the unary ++

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

operator, either pre- or post-, increments the address it stores

by the amount sizeof(type) where "type" is the type of the object
pointed to. (i.e. 2 for an integer, 4 for along,

etc.).

Since ablock of 10 integers located contiguously in memory
is, by definition, an array of integers, this brings up an
interesting relationship between arrays and pointers.

Consider the following:

intmy_array[] ={1,23,17,4,-5,10G ;

Here we have an array containing 6 integers. Werefer to
each of these integers by means of a subscript tomy_array, i.e.
using my_array[Q] through my_array[5]. But, we could
alternatively access them via a pointer as follows:

int *ptr;

ptr = &my_array[0]; /* point our pointer at thefirgt
integer in our array */

And then we could print out our array either using the array
notation or by dereferencing our pointer. The following code
illugrates this:

#include <stdio.h>

int my_array[] ={1,23,17,4,-5,100};
int *ptr;

int main(void)
t
inti;
ptr = &my_array[0]; /* point our pointer to the first
element of the array */
printf("\n\n");
for(i=0; i <6; i+t)
{
printf("my_array[%d] = %d ",i,my_array[i]); /*<--A*/
printf("ptr + %d = %d\n",i, * (ptr + i)); [*<--B*/

return O;

Compile and run the above program and carefully note lines A
and B and that the program prints out the same values in either
case. Also observe how we dereferenced our pointer inline B,
i.e. wefirst added i toit and then dereferenced the new
pointer. Changeline B to read:

printf("ptr + %d = %d\n" i, *ptr++);

and run it again... then changeit to:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

printf("ptr + %d = %d\n",i, * (++ptr));

and try once more. Each timetry and predict the outcome and
carefully look at the actual outcome.

In C, the standard states that wherever we might use
&var_name[0] we can replace that with var_name, thusin our code
where we wrote;

ptr = &my_array[0];
we can write:
ptr =my_array; to achievethe sameresult.

Thisleads many texts to state that the name of an array isa
pointer. Whilethisistrue, | prefer to mentally think "the
name of the array is the address of first element in the array”.
Many beginners (including myself when | was learning) have a
tendency to become confused by thinking of it asa pointer.
For example, while we can write ptr = my_array; we cannot write

my_array = ptr;

Thereason isthat thewhile ptr isavariable, my_array isa
constant. That is, thelocation a which the first element of
my_array will be stored cannot be changed once my_array[] has
been declared.

Earlier when discussing theterm "lvalue' | cited K& R-2 where
it sated:

"An _object_isanamed region of storage; an _Ivalue_isan
expression referring to an object”.

Thisraises an interesting problem. Sincemy_array is anamed
region of storage, why is"my_array" in the above assignment
statement not an Ivalue? To resolve this problem, somerefer to
"my_array" asan "unmodifiable lvalue'.

Modify the example program above by changing
ptr =&my_array[0]; to ptr=my_array;
and run it again to verify the results are identical.

Now, |et'sdelve alittle further into the difference between
the names "ptr" and "my_array" as used above. Some writerswill
refer to an array’'s name asa_constant_ pointer. What do we
mean by that? Wdll, to understand the term "constant" in this
sense, let's go back to our definition of theterm "variable".
When we declare a variable we set aside a spot in memory to hold
the value of the appropriatetype. Once that is done the name of
the variable can be interpreted in one of two ways. When used on
the left side of the assignment operator, the compiler interprets
it as the memory location to which to move that value resulting

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

from evaluation of the right side of the assignment operator.
But, when used on the right side of the assignment operator, the
name of a variable isinterpreted to mean the contents stored at
that memory address set asde to hold the value of that variable.

With that in mind, let'snow consider the simplest of
constants, asin:

inti, k;
i=2;

Here, while"i" isa variable and then occupies spacein the
data portion of memory, "2" isa constant and, as such, insead
of setting aside memory in the data segment, it isimbedded
directly in the code segment of memory. That is, while writing
something like k =i; tellsthe compiler to create code which at
run timewill look at memory location &i to determine the value
to be moved to k, code created by i =2; simply putsthe'2'in
the code and thereis no referencing of the data segment. That
is, both k and i are objects, but 2 isnot an object.

Similarly, in the above, since"my_array” is a constant, once
the compiler establishes where the array itself is to be stored,
it "knows' the address of my_array[0] and on seeing:

ptr = my_array;

it smply uses this address as a congtant in the code segment and
thereis no referencing of the data segment beyond that.

Wéll, that's alot of technical stuff to digest and | don't
expect a beginner to understand all of it on first reading. With
time and experimentation you will want to come back and re-read
thefirg 2 chapters. But for now, let'smove on to the
relationship between pointers, character arrays, and strings.

->

CHAPTER 3: Pointersand Strings

The study of stringsisuseful to further tiein the
relationship between pointersand arrays. It also makesit easy
toillustrate how some of the standard C string functions can be
implemented. Finally it illustrates how and when pointers can and
should be passed to functions.

In C, strings are arrays of characters. Thisisnot
necessarily truein other languages. In BASIC, Pascal, Fortran
and various other languages, a string hasits own datatype. But
in Citdoesnot. In Casdtringisan array of characters
terminated with abinary zero character (written as'\0"). To
start off our discussion we will write some code which, while
preferred for illustrative purposes, you would probably never
writein an actual program. Consider, for example:

char my_string[40];

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

my_string[0] = T";
my_string[1] =€
my_string[2] = 'd":
my_string[3] = "\0';

While one would never build a string like this, the end
resultisastring in that it isan array of characters
_terminated_with_a nul_character . By definition, in C, astring
isan array of charactersterminated with the nul character. Be
awarethat "nul” is_not_thesameas"NULL". Thenul refersto azero
asisdefined by the escape sequence \0'. That isit occupies
one byte of memory. The NULL, on the other hand, isthe value of
an uninitialized pointer and pointers require more than one byte
of storage. NULL is#defined in aheader filein your C
compiler, nul may not be #defined at all.

Since writing the above code would be very time consuming, C
permits two alternate ways of achieving the samething. Firgt,
one might write:

char my_string[40] ={'T", '€, 'd', \0',};

But this also takes more typing than is convenient. So, C
permits:

char my_string[40] = "Ted";

When the double quotes are used, instead of the single quotes
as was donein the previous examples, the nul character ("\0')
is automatically appended to the end of the gtring.

In all of the above cases, the same thing happens. The
compiler sets aside an contiguous block of memory 40 byteslong
to hold characters and initialized it such that the first 4
characters are Ted\O.

Now, consider the following program:

.................. program 3.1
#include <stdio.h>

char strA[80] = "A string to be used for demonstration purposes’;
char strB[80];

int main(void)
{
char *pA; [* apointer to type character */
char *pB; /* another pointer to type character */
puts(strA); /* show string A */
pA = &rA; /* point pA at string A */
puts(pA); /* show what pA is pointing to */
pB =strB; /* point pB at string B */
putchar(\n'); /* move down one line on the screen */
while(*pA 1="10") /* line A (seetext) */

*pB++=*pA++; /* line B (seetext) */

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}

pPB ="0; / line C (seetext) */
puts(strB); [* show strB on screen */
return O,

}

--------- end program 3.1

In the above we start out by defining two character arrays of
80 characters each. Sincethese are globally defined, they are
initialized to al \O'sfirst. Then, srA hasthefirst 42
charactersinitiaized to the string in quotes.

Now, moving into the code, we declare two character pointers
and show the string on the screen. Wethen "point” the pointer pA
at strA. That is, by means of the assignment statement we copy
the address of strA[Q] into our variable pA. We now use puts()
to show that which is pointed to by pA on the screen. Consder
here that the function prototype for puts() is:

int puts(const char *s);

For the moment, ignore the "const”. The parameter passed to
putsis apointer, that isthe _value of a pointer (since all
parametersin C are passed by value), and the value of a pointer
isthe addressto which it points, or, Smply, an address. Thus
when we write:

puts(strA); as we have seen, we are passing the
address of strA[0]. Similarly, when we write:

puts(pA); we are passing the same address, since
we have set pA = dtrA;

Given that, follow the code down to the while() satement on
lineA. Line A states:

While the character pointed to by pA (i.e. *pA) isnot anul
character (i.e. the terminating "\0"), do the following:

line B states: copy the character pointed to by pA to the
space pointed to by pB, then increment pA so it pointsto the
next character and pB so it points to the next space.

When we have copied the last character, pA now pointsto the
terminating nul character and the loop ends. However, we have not
copied the nul character. And, by definition astringin C
_must_benul terminated. So, we add the nul character with line
C.

It isvery educational to run this program with your debugger
while watching strA, strB, pA and pB and single stepping through
the program. It is even more educational if ingead of smply
defining strBJ[] as has been done above, initializeit also with
something like:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

strB[80] = "1234%789012345689012315678PD12346789023456/890"

where the number of digitsused is greater than the length of
strA and then repeat the single stepping procedure while watching
the above variables. Givethesethingsatry!

Getting back to the prototype for puts() for amoment, the
"congt" used as a parameter modifier informs the user that the
function will not modify the string pointed to by s, i.e. it will
treat that string as a constant.

Of course, what the above program illustrates is a simple way
of copying asring. After playing with the above urtil you have
a good understanding of what is happening, we can proceed to
creating our own replacement for the standard strcpy() that comes
with C. It might look like:

char *my_strcpy(char *destination, char * source)

char *p = destination

while (*source '="\0")
{ *pt++ = *sourcet+;

}

*p="0}

return destination.

}

Inthis case, | have followed the practice used in the
standard routine of returning a pointer to the destination.

Again, the function is designed to accept the values of two
character pointers, i.e. addresses, and thusin the previous
program we could write;

int main(void)

{
my_strcpy(strB, strA);
puts(strB);

}

| have deviated dightly from the form used in standard C
which would have the prototype:

char *my_strcpy(char *destination, const char * source);

Here the "const" modifier is used to assure the user that the
function will not modify the contents pointed to by the source
pointer. You can prove this by modifying the function above, and
its prototype, to include the "const" modifier as shown. Then,
within the function you can add a statement which attemptsto
change the contents of that which is pointed to by source, such
as.

*source="'X";

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

which would normally change the firgt character of the string to
an X. Theconst modifier should cause your compiler to catch
thisasan error. Try it and see.

Now, let's consider some of the things the above examples
have shown us. First off, consider the fact that *ptr++ isto be
interpreted as returning the value pointed to by ptr and then
incrementing the pointer value. On the other hand, thishasto
do with the precedence of the operators. Were we to write
(*ptr)++ we would increment, not the pointer, but that which the
pointer pointsto! i.e. if used on thefirst character of the
above example string the 'T' would be incremented toa'U'. You
can write some simple example code to illustrate this.

Recall again that a string is nothing more than an array
of characters, with thelast character being a"\0'. What we
have done above is deal with copying an array. It happensto be
an array of characters but the technique could be applied to an
array of integers, doubles, etc. In those cases, however, we
would not be dealing with strings and hence the end of the array
would not be marked with a special value like the nul character.
We could implement a version that relied on a special valueto
identify the end. For example, we could copy an array of positive
integers by marking the end with a negative integer. On the
other hand, it is more usual that when we write afunction to
copy an array of items other than strings we pass the function
the number of itemsto be copied aswell asthe address of the
array, e.g. something like the following prototype might
indicate;

void int_copy(int *ptrA, int *ptrB, int nbr);

where nbr isthe number of integersto be copied. Y ou might want
to play with thisidea and create an array of integers and seeiif
you can write the function int_copy() and makeit work.

This permits using functions to manipulate large arrays. For
example, if we have an array of 5000 integersthat we want to
manipulate with a function, we need only pass to that function
the address of the array (and any auxiliary information such as
nbr above, depending on what we are doing). The array itself does
not get passed, i.e. thewhole array isnot copied and put on
the stack before calling the function, only its addressis sent.

Thisisdifferent from passing, say an integer, to a
function. When we pass an integer we make a copy of the integer,
i.e. getitsvalue and put it on the stack. Within the function
any manipulation of the value passed can in no way effect the
original integer. But, with arrays and pointers we can pass the
address of the variable and hence manipulate the val ues of the
original variables.

->

CHAPTER 4: More on Strings

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Well, we have progressed quiteaway in ashort time! Let's
back up alittle and look at what was donein Chapter 3 on
copying of strings but in adifferent light. Consider the
following function:

char *my_strcpy(char dest[], char source]])

{
inti=0;
while (source]i] '="0")

{
dest[i] = sourceli];

i++;
}
dest[i] ="\0;
return dest;

}

Recall that strings are arrays of characters. Here we have
chosen to use array notation instead of pointer notation to do
the actual copying. Theresultsarethe same, i.e. the string
gets copied using thisnotation just as accurately asit did
before. Thisraises some interesting points which we will
discuss.

Since parameters are passed by value, in both the passing of
a character pointer or the name of the array as above, what
actually gets passed is the address of the first eement of each
array. Thus, thenumerical value of the parameter passed isthe
same whether we use a character pointer or an array name asa
parameter. Thiswould tend to imply that somehow:

sourcei] isthesameas *(p+i);

In fact, thisistrue, i.e wherever onewrites gi] it can
be replaced with *(a+ i) without any problems. In fact, the
compiler will create the same code in either case. Thus we see
that pointer arithmetic isthe same thing as array indexing.
Either syntax produces the same result.

ThisisNOT saying that pointers and arrays are the same
thing, they arenot. We are only saying that to identify a given
element of an array we have the choice of two syntaxes, one using
array indexing and the other using pointer arithmetic, which
yield identical results.

Now, looking at thislast expression, part of it.. (a+1)
isasimple addition using the + operator and therules of ¢
state that such an expression iscommutative. Thatis (a+i)
isidentical to (i + a). Thuswe could write*(i + a) just as
easlly as*(a+i).

But *(i + @) could have comefromi[a] ! Fromal of this
comes the curious truth that if:

char a[20];

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

inti;
writing &3] ='x'; isthe sameaswriting
3[a] ='x

Tryit! Set up an array of characters, integers or longs,
etc. and assigned the 3rd or 4th element avalue using the
conventional approach and then print out that valueto be sure
you have that working. Then reverse the array notation as | have
done above. A good compiler will not balk and the results will
beidentical. A curiosity... nothing more!

Now, looking at our function above, when we write:
dest[i] = sourcei];

due to the fact that array indexing and pointer arithmetic yield
identical results, we can writethisas:

*(dest + i) = *(source + i);

But, thistakes 2 additions for each value taken on by i.
Additions, generally speaking, take more time than
incrementations (such asthose done using the ++ operator asin
i++). Thismay not be truein modern optimizing compilers, but
one can never be sure. Thus, the pointer version may be a bit
faster than the array version.

Another way to speed up the pointer version would be to
change:

while (*source!="0") tosimply while (*source)

since the value within the parenthesis will go to zero (FALSE) at
the sametimein either case.

At this point you might want to experiment a bit with writing
some of your own programs using pointers. Manipulating strings
isagood place to experiment. 'Y ou might want to write your own
versions of such standard functions as:

strlen();
streat();
strchr();

and any others you might have on your system.
We will come back to strings and their manipulation through

pointersin afuture chapter. For now, |et's move on and discuss
structures for a bit.

->

CHAPTER 5: Pointers and Structures

Asyou may know, we can declare the form of a block of data

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

containing different data types by means of a structure
declaration. For example, a personne file might contain
structures which look something like:

struct tag{

char Iname[20]; [* last name */

char fname[20); [* first name*/

int age; [* age*/
float rate; [* eg. 12.75 per hour */
h

Let's say we have a bunch of these structuresin adisk file
and we want to read each one out and print out thefirst and last
name of each one so that we can have aligt of the peoplein our
files. Theremaining information will not be printed out. We
will want to do this printing with a function call and passto
that function a pointer to the structure at hand. For
demonstration purposes | will use only one structure for now. But
redize the god isthe writing of the function, not the reading
of the file which, presumably, we know how to do.

For review, recall that we can access structure members with
the dot operator asin:

--------------- program 5.1 ----------------—-
#include <stdio.h>
#include <string.h>

struct tag{

char Iname[20]; /* last name */

char fname[20]; /* firs name*/

int age; [* age*/
float rate; [* e.qg. 12.75 per hour */
h

struct tag my_struct; /* declare the structure m_struct */

int main(void)

{
strepy(my_struct.Iname,” Jensen”);
strepy(my_struct.fname," Ted");
printf("\n%s",my_struct.fname);
printf("%s\n",my_struct.Iname);
return O,

Now, this particular structure israther small compared to
many used in C programs. To the above we might want to add:

date of hire; (data types not shown)
date of last raise

last_percent_increase;

emergency_phone;

medical_plan;

Socia_S Nbr;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

If we have alarge number of employees, what we want to do
manipulate the data in these structures by means of functions.
For example we might want a function print out the name of the
employee listed in any structure passed toit. However, in the
original C (Kernighan & Ritchie, 1st Edition) it was not possible
to pass a structure, only a pointer to a structure could be
passed. In ANSI C, it isnow permissible to pass the complete
structure. But, since our goal hereisto learn more about
pointers, we won't pursue that.

Anyway, if we pass the whole structure it means that we must
copy the contents of the structure from the calling function to
the called function. In systems using stacks, thisis done by
pushing the contents of the structure on the stack. With large
structures this could prove to be a problem. However, passing a
pointer uses a minimum amount of stack space.

Inany case, since thisisadiscussion of pointers, we will
discuss how we go about passing a pointer to a structure and then
using it within the function.

Consider the case described, i.e. we want a function that
will accept as a parameter a pointer to a structure and from
within that function we want to access members of the structure.
For example we want to print out the name of the employeein our
example structure.

Okay, so we know that our pointer isgoing to point to a

structure declared using struct tag. We declare such a pointer
with the declaration:

druct tag *st_pir;
and we point it to our example structure with:

g ptr = &my_struct;

Now, we can access a given member by de-referencing the
pointer. But, how do we de-reference the pointer to a structure?

WEell, consider the fact that we might want to use the pointer to
set the age of the employee. We would write:

(*st_ptr).age = 63;

Look at this carefully. It says, replace that within the
parenthesis with that which st_ptr points to, which isthe
structure my_struct. Thus, this breaks down to the same as
my_struct.age.

However, thisis a fairly often used expression and the
designers of C have created an aternate syntax with the same
meaning which is:

s ptr->age = 63;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

With that in mind, look at the following program:

#include <stdio.h>
#include <string.h>

struct tag{ [* the structure type */
char Iname[20]; [* last name */
char fname[20]; [* firs name */
int age; [* age*/
float rate; [* e.g. 12.75 per hour */
h

struct tag my_struct; [* define the structure */
void show_name(struct tag *p); /* function prototype */

int main(void)

{
struct tag *st_ptr; [* apointer to astructure */
st ptr =&my_struct; [* point the pointer to my_struct */
strepy(my_struct.lname,” Jensen”);
strepy(my_struct.fname," Ted");
printf("\n%s ",my_struct.fname);
printf("%s\n",my_struct.Iname);
my_struct.age = 63;
show_name(st_ptr); [* passthe pointer */
return O,

void show_name(struct tag *p)

printf("\n%s ", p->fname); /* p pointsto a structure */
printf("%s ", p->Iname);
printf("%ad\n", p->age);

Again, thisisalot of information to absorb at onetime.
The reader should compile and run the various code snippets and
using a debugger monitor things like my_struct and p while single
stepping through the main and following the code down into the
function to see what is happening.

->

CHAPTER 6: Some more on Strings, and Arrays of Strings
Wéll, let's go back to stringsfor abit. In the following

all assignments are to be understood as being global, i.e. made

outside of any function, including main.

We pointed out in an earlier chapter that we could write:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

char my_string[40] = "Ted";

which would allocate space for a40 byte array and put the string
in the first 4 bytes (three for the charactersin the quotes and
a 4th to hand e the terminating "\O'.

Actually, if all we wanted to do was store thename "Ted" we
could write:

char my_name[] = "Ted";

and the compiler would count the characters, leave room for the
nul character and store the total of the four charactersin memory
the location of which would be returned by the array name, in this
case my_string.

In some code, instead of the above, you might see:
char *my_name="Ted";

which isan aternate approach. Isthere adifference between

these? The answer is.. yes. Using the array notation 4 bytes of
storage in the static memory block are taken up, one for each
character and one for the terminating nul character. But, in the
pointer notation the same 4 bytes required, _plus N bytesto

store the pointer variable my_name (where N depends on the system
but is usually a minimum of 2 bytes and can be 4 or more).

Inthe array notation, "my_name" is short for & myname|Q]
which isthe address of the first element of the array. Since
the location of the array is fixed during run time, thisisa
constant (not a variable). In the pointer notation my_nameisa
variable. Astowhichisthe better method, that depends on
what you are going to do within therest of the program.

Let'snow go one step further and consider what happensif
each of these declarations are done within a function as opposed
to globally outside the bounds of any function.
void my_function_A(char *ptr)

char a] ="ABCDE";
}
void my_function_B(char *ptr)

char *cp ="ABCDE";

Here we are dealing with automatic variables in both cases.
In my_function_A the automatic variableis the character array
a[]. Inmy_function_B it isthe pointer cp. While Cis designed

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

in such away that a stack isnot required on those systems

which don't use them, my particular processor (80286) and
compiler (TC++) combination uses a stack. | wrote asimple
program incorporating functions similar to those above and found
that in my_function_A the 5 charactersin the string were all
stored on the stack. On the other hand, in my_function_B, the 5
characters were stored in the data space and the pointer was
stored on the stack.

By making &[] static | could force the compiler to place the
5 charactersin the data space as opposed to the stack. | did
this exercise to point out just one more difference between
dealing with arrays and dealing with pointers. By the way, array
initialization of automatic variables as | have donein
my_function_A wasillegal in the older K&R C and only "came of
age" in thenewer ANSI C. A fact that may be important when one
is considering portability and backwards compatihility.

Aslong as we are discussing the rel ationshi p/differences
between pointers and arrays, let's move on to multi-dimensional
arrays. Consider, for examplethe array:

char multi[5][10];

Just what doesthismean? Wél, let's consider it in the
following light.

char multi[5][10];

JAVAVAVAVAVAVAVAN

Let'stake the underlined part to be the "name" of an array.
Then prepending the "char" and appending the [10] we have an
array of 10 characters. But, the name "multi[5]" isitself an
array indicating that there are 5 d ements each being an array of
10 characters. Hence we have an array of 5 arrays of 10
characters each..

Assume we have filled this two dimensional array with data of
somekind. In memory, it might look asif it had been formed by
initializing 5 separate arrays using something like:

multi[0] ={'0,'1','2,'3,'4,'5,'6','7','8,'9}
multi[1] ={'a,'b','c,'d, '€, g, "}
multi[2] = {'A"/B','C,'D','E,'F,'GH'I'J}
multi[3] ={'9,'8,7,6,'5,4,3,2,1,0?}
multi[4] ={'J,I''H"/G'F,'E,'D','C B A"}

At the same time, individual elements might be addressable using
syntax such as:

multi[0][3] = '3
multi[1][7] = "h
multi[4][0] ="J

Since arrays are contiguous in memory, our actual memory
block for the above should look like:

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

012345678%abcdefghijABCDEFGHIJ9876543210 HGFEDCBA
N
garting at the address & multi[0][0]

Notethat | did _not_write multi[0] ="012356789. Had |
done so aterminating "\O' would have been implied since whenever
double quotes are used a"\O' character is appended to the
characters contained within those quotes. Had that been the case
| would have had to set aside room for 11 characters per row
instead of 10.

My goal inthe aboveistoillustrate how memory islaid out
for 2 dimensional arrays. That is, thisisa 2 dimensiona array
of characters, NOT an array of "strings".

Now, the compiler knows how many columns are present in the
array so it can interpret multi + 1 asthe address of the'a' in
the 2nd row above. That is, it adds 10, the number of columns,
to get thislocation. If we were dealing with integersand an
array with the same dimension the compiler would add
10*sizeof(int) which, on my machine, would be 20. Thus, the
address of the "9" in the 4th row above would be & multi[3][0] or
*(multi + 3) in pointer notation. To get to the content of the
2nd element in the 4th row we add 1 to this address and
dereferencetheresult asin

((multi +3) + 1)
With alittle thought we can see that:

((multi +row) + col) and
multi[row][col] yield the sameresults.

The following program illustrates this using integer arrays
instead of character arrays.

................... program 6.1
#include <stdio.h>

#define ROWS 5
#define COLS 10

int multif ROWS][COLS];

int main(void)
{
int row, col;
for (row = 0; row < ROWS;, row++)
for(col = 0; col < COLS; col++)
multi[row][col] = row*cal;
for (row = 0; row < ROWS; row++)
for(col = 0; col < COLS; col++)

printf("\n%d ", multi[row][cal]);
printf("%d ", * (* (multi + row) + cal));

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Because of the double de-referencing required in the pointer
version, the name of a 2 dimensiona array is often said to be
equivalent to a pointer to a pointer. With a three dimensional
array we would be dealing with an array of arrays of arrays and
some might say its name would be equivalent to a pointer to a
pointer to apointer. However, here we have initialy set aside
the block of memory for the array by defining it usng array
notation. Hence, we are dealing with a constant, not a variable.
That iswe are talking about afixed address not avariable
pointer. The dereferencing function used above permits usto
access any element in the array of arrays without the need of
changing the value of that address (the address of multi[0][0] as
given by the symbol "multi").

->

CHAPTER 7: More on Multi-Dimensiona Arrays
In the previous chapter we noted that given

#define ROWS 5
#define COLS 10

int multif ROWS][COLS];

we can access individual e ements of the array "multi* using
ether:

multi[row][col] or *(*(multi + row) + col)

To understand more fully what isgoing on, let usreplace
*(multi + row) with X asin:
*(X + cal)

Now, from thiswe see that X islike a pointer since the
expression is de-referenced and we know that col is an integer.
Here the arithmetic being used is of a special kind called
"pointer arithmetic" isbeing used. That meansthat, since we
are talking about an integer array, the address pointed to by
(i.,evalueof) X +col +1 mug be greater than the address
X +col by and amount equal to sizeof(int).

Since we know the memory layout for 2 dimensional arrays, we
can determine that in the expresson multi + row asused
above, multi +row+ 1 must increase by value an amount
equal to that needed to "point to" the next row, which in this
case would be an amount equal to COLS* sizeof(int).

That saysthat if the expression *(*(multi + row) + col)
isto be evaluated correctly at run time, the compiler must

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

generate code which takes into consideration the value of COLS,
i.e. the2nd dimension. Because of the equivalence of the two
forms of expression, thisistrue whether we are using the
pointer expression as here or the array expression
multi[row][col].

Thus, to evaluate either expression, atotal of 5 values must be
known:

1) Theaddress of the first element of the array, which is
returned by the expression "multi”, i.e. the name of the

array.

2) Thesize of the type of the elements of the array, in
this case sizeof(int).

3) The2nd dimension of the array

4) The specific index value for the first dimension, "row"
in this case.

5) The specific index value for the second dimension, "col"
in this case.

Given all of that, consider the problem of designing a
function to manipulate the element values of a previously
declared array. For example, one which would set al the dements
of thearray "multi" to the value 1.

void set_value(int m_array[][[COLS])
{

int row, col;

for(row = 0; row < ROWS; row++)

for(col = 0; col < COLS; col++)
m_array[row][col] = 1;

}
}

And to call thisfunction we would then use:
set_value(multi);

Now, within the function we have used the values #defined by
ROWS and COL S which set the limits on the for oops. But, these
#defines are just constants as far asthe compiler is concerned,
i.e. thereisnothing to connect them to the array size within
the function. row and col arelocal variables, of course. The
formal parameter definition informsthe compiler that we are
talking about an integer array. Weredlly don't need thefirst
dimension and, as will be seen later, there are occasions where
we would prefer not to define it within the parameter definition
so, out of habit or consistency, | have not used it here. But,
the second dimension _must_ be used as has been shown in the

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

expression for the parameter. Thereason isthat it isneeded in
the evaluation of m_array[row][col] ashasbeen described.

The reason isthat while the parameter defines the data type (int

in this case) and the automatic variables for row and column are
defined in thefor loops, only one value can be passed using a
single parameter. Inthiscase, that isthevalue of "multi" as
noted in the call statement, i.e. the address of the first

element, often referred to as a pointer to the array. Thus, the

only way we have of informing the compiler of the 2nd dimension
is by explicitly including it in the parameter definition.

In fact, in generd all dimensions of higher order than one
are needed when dealing with multi-dimensional arrays. That is
if we aretalking about 3 dimensona arrays, the2nd _and_ 3rd
dimension must be specified in the parameter definition.

>

CHAPTER 8: Pointersto Arrays

Painters, of course, can be "pointed a" any type of data
object, including arrays. Whilethat was evident when we
discussed program 3.1, it isimportant to expand on how we do
this when it comes to multi-dimensional arrays.

Toreview, in Chapter 2 we stated that given an array of
integerswe could point an integer pointer at that array using:

int *ptr;

ptr =&my array[0]; /* point our pointer at thefirst
integer in our array */

Aswe stated there, the type of the pointer variable must match
the type of the first dement of the array.

In addition, we can use a pointer asaformal parameter of a
function which is designed to manipulate an array. e.g.

Given:
intarray[3] ={'1,'5, '7"};
void a_func(int *p);

we can pass the address of the array to the function by making
the call

a func(array);

Thiskind of code promotes the mis-conception that pointers and
arrays arethe samething. Of coursg, if you have followed this
text carefully up to this point you know the difference between a
pointer and an array. The function would be better written (in
termsof clarity) as a func(int p[]); Notethat here

we need not include the dimension since what we are passing is
the address of the array, not the array itsalf.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

We now turn to the problem of the 2 dimensiona array. As
stated in the last chapter, C interprets a2 dimensiona array as
an array of one dimensional arrays. That being the case, the
first element of a 2 dimensional array of integersisaone
dimensional array of integers. And a pointer to atwo
dimensional array of integers must be a pointer to that data
type. Oneway of accomplishing thisisthrough the use of the
keyword "typedef". typedef assigns anew nameto a specified
datatype. For example:

typedef unsigned char byte;
provides the name "byte" to mean type "unsigned char". Hence
byteb[10]; would be an array of unsgned characters.

Note that in the typedef declaration, the word "byte" has
replaced that which would normally be the name of our unsigned
char. Thatis, therulefor using typedef is that the new name

for the data type is the name used in the definition of the data
type. Thusin:

typedef int Array[10];

Array becomes a data type for an array of 10 integers. i.e.
Array my_arr;

declaresmy_arr asan array of 10 integers and
Array arr2d[5];

makes arr2d an array of 5 arrays of 10 integers each.

Alsonotethat Array *pld; makespld apointer toan
array of 10 integers. Because *pld pointsto the sametype as
arr2, assigning the address of the two dimensional array arr2d to
pld the pointer to a one dimensional array of 10 integersis
acceptable. i.e. pld = &arr2d0]; or pld=ar2d,
are both correct.

Since the data type we use for our pointer isan array of 10
integers we would expect that incrementing p1d by 1 would change
its value by 10*sizeof(int), which it does. That is sizeof(*p1d)
is20. You can prove thisto yourself by writing and running a
simple short program.

Now, while using typedef makes things clearer for the reader
and easer on the programmer, it isnot really necessary. What
we need isaway of declaring a pointer like pld without the need
of the typedef keyword. It turns out that this can be done and
that int (*pld)[10Q]; isthe proper declaration, i.e pld here
isapointer to an array of 10 integers just asit was under the
declaration using the Array type. Note that thisis different
than int*pld10]; whichwould make pld the name of an

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

array of 10 pointersto typeint.

->

CHAPTER 9: Pointers and Dynamic Allocation of Memory

There aretimes when it is convenient to allocate memory at
run time using malloc(), calloc(), or other allocation functions.
Using this approach permits postponing the decision on the size
of the memory block need to store an array, for example, until
runtime. Or it permitsusing a section of memory for the
storage of an array of integersat one point in time, and then
when that memory is no longer needed it can be freed up for other
uses, such asthe storage of an array of structures.

When memory is allocated, the all ocating function (such as
malloc(), calloc(), etc.) returnsapointer. Thetype of this
pointer depends on whether you are using an older K&R compiler or
the newer ANSI type compiler. With the older compiler the type
of thereturned pointer is char, with the ANSI compileritis
void.

If you are using an older compiler, and you want to allocate
memory for an array of integers you will have to cast the char
pointer returned to an integer pointer. For example, to allocate
space for 10 integers we might write:

int *iptr;

iptr = (int *)malloc(10 * sizeof(int));
if(iptr == NULL)

{ .. ERROR ROUTINE GOES HERE .. }

If you are using an ANSI compliant compiler, malloc() returns
avoid pointer and since avoid pointer can be assigned to a
pointer variable of any object type, the (int *) cast shown above
isnot needed. Thearray dimension can be determined at run time
and is not needed at compiletime. That is, the"10" above could
be avariableread in from a datafile or keyboard, or calculated
based on some need, at run time,

Because of the equival ence between array and pointer
notation, once iptr has been assigned as above, one can usethe
array notation. For example, one could write:

int k;
for(k = 0; k < 10; k++
iptr[k] = 2;

to set the values of all ementsto 2.

Even with areasonably good understanding of pointers and
arrays, one place the newcomer to Cislikely to stumble at first
isin the dynamic allocation of multi-dimensiona arrays. In
general, we would like to be able to access elements of such
arrays using array notation, not pointer notation, wherever
possible. Depending on the application we may or may not know
both dimensons at compiletime. Thisleadsto avariety of ways

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

to go about our task.

Aswe have seen, when dynamically allocating a one
dimensional array the dimension can be determined at run time.
Now, when using dynamic allocation of higher order arrays, we
never need to know the first dimension at compiletime. Whether
we need to know the higher dimensions depends on how we go about
writing the code. Here | will discuss various methods of
dynamically allocating room for 2 dimensional arrays of integers.

First we will consider cases where the 2nd dimension is known
at compiletime.

METHOD 1:

Oneway of dealing with the problem is through the use of the
"typedef" keyword. To alocate a2 dimensional array of integers
recall that the following two notations result in the same object
code being generated:

multi[row][col] =1; *(*(multi +row) + col) = 1;

It isalso true that the following two notations generate the
same code;

multi[row] *(multi + row)

Since the one on the right must evaluate to a pointer, the
array notation on the left must also evaluate to a pointer. In
fact multi[O] will return a pointer to the first integer in the
first row, multi[1] a pointer to the first integer of the second
row, etc. Actualy, multi[n] evaluatesto a pointer to that
array of integerswhich makes up the n-th row of our 2
dimensional array. That is, multi can be thought of as an array
of arrays and multi[n] as a pointer to the n-th array of this
array of arrays. Herethe word "pointer" is being used
to represent an address value. While such usageis common in the
literature, when reading such statements one must be careful to
distingu sh between the constant address of an array and a
variable pointer which isadata object in itsalf.

Consider now:

#include <stdio.h>
#define COLS 5

typedef int RowArray[COLS];
RowArray *rptr;

int main(void)
{
int nrows = 10;
int row, col;
rptr = malloc(nrows* COLS * sizeof(int))
for(row = O; row < nrows; row++)
for(col = 0; col < COLS; col++)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

rptr[row][col] = 17;

Here | have assumed an ANSI compiler so a cast on the void
pointer returned by malloc() isnot required. If you are using
an older K&R compiler you will have to cast using:

rptr = (RowArray *)malloc(.... etc.

Using this approach, "rptr" has al the characteristics of an
array name and array notation may be used throughout therest of
the program. That also meansthat if you intend to write a
function to modify the array contents, you must use COLS as a
part of the formal parameter in that function, just aswe did
when discussing the passing of two dimensional arraysto a
function.

METHOD 2:

Inthe METHOD 1 above, rptr turned out to be a pointer to
type "one dimensional array of COLS integers'. It turnsout that
thereis syntax which can be used for this type without the need
of typedef. If we write:

int (char *xptr)[COLS];

the variable xptr will have all the same characteristics asthe
variablerptr in METHOD 1 above, and we need not use the
"typedef" keyword. Here xptr isapointer to an array of
integers and the size of that array is given by the #defined
COLS. The parenthesis placement makes the pointer notation
predominate, even though the array notation has higher
precedence. i.e. had we written

int char *xptr[COLS];

we would have defined xptr as an array of pointers holding the
number of pointersequal to that #defined by COLS. Which isnot
the samething at all. However, arrays of pointershave their

use in the dynamic allocation of two dimensiona arrays, aswill
be seen in the next 2 methods.

METHOD 3:

Consder the case where we do not know the number of elements
in each row at compiletime, i.e. both the number of rows and
number of columns must be determined at run time. One way of
doing thiswould be to create an array of pointersto typeint
and then allocate space for each row and point these pointers a
each row. Consider:

#include <stdio.h>
#include <stdlib.h>

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

int main(void)
{
intnrows=5; /* Both nrows and ncols could be evaluated */
int ncols=10; /* orreadinat runtime*/
int row, col;
int **rowptr;
rowptr = malloc(nrows * sizeof(int *));
if(rowptr == NULL)

puts("\nFailure to allocate room for row pointers.\n");
exit(0);

}
printf("\n\n\nindex Pointer(hex) Pointer(dec) Diff.(dec)");
for(row = O; row < nrows; row++)
{
rowptr[row] = malloc(ncols * sizeof(int));
if(rowptr[row] == NULL)
{

printf("\nFailure to allocate for row[%d]\n",row);

exit(0);
printf(*\n%d %p %d", row, rowptr[row], rowptr[row]);
if(row > 0)
printf(" %d",(int)(rowptr[row] - rowptr[row-1]));
}
return O;

}

In the above code rowptr is a pointer to pointer to type int.
In this caseit pointsto the first element of an array of
pointersto typeint. Consider the number of callsto malloc():

To get the array of pointers 1 cdl
To get space for therows 5 cdls
Total 6 cdls

If you choose to use this approach note that while you can
use the array notation to access individual elements of the
array, e.qg. rowptr[row][col] = 17;, it does not mean that the
datain the "two dimensiona array" is contiguous in memory.

But, you can use the array notation just asif it were a
continuous block of memory. For example, you can write:

rowptr[row][col] = 176;
just asif rowptr were the name of atwo dimensional array
created at compiletime. Of course 'row' and 'col' must be
within the bounds of the array you have created, just aswith an
array created at compiletime.

If it isdesired to have a contiguous block of memory

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

dedicated to the storage of the elementsin the array it can be
done asfollows:

METHOD 4:

In this method we allocate a block of memory to hold the
whole array first. Wethen create an array of pointersto point
to each row. Thus even though the array of pointersisbeing
used, the actual array in memory is contiguous. The code looks
likethis:

#include <stdio.n>
#include <stdlib.h>
#include <conio.h>

int main(void)

int **rptr;
int * aptr;
int *testptr;
int k;
intnrows=5; /* Both nrows and ncols could be evaluated */
intncols=10; /* orreadinatruntime*/
int row, col;
/* we now allocate the memory for the array */
aptr = malloc(nrows * ncols * sizeof(int *));
if(aptr == NULL)

puts("\nFailureto allocate room for the array”);
exit(0);
}

/* next we allocate room for the pointersto therows */
rptr = malloc(nrows * sizeof(int *));
if(rptr == NULL)

puts("\nFailure to allocate room for pointers’);

exit(0);
}

/* and now we 'point’ the pointers*/
clrser();
for(k = 0; k < nrows; k++)
{
rptr[k] = aptr + (k * ncols);
printf("\n\n\nindex Pointer(hex) Pointer(dec) Diff.(dec)");
for(row = O; row < nrows; row++)
printf("\n%d %p %d", row, rptr[row], rptr[row]);
if(row > 0)
printf(" %d",(int)(rptr[row] - rptr[row-1]));
}
for(row = O; row < nrows; row++)

for(col = 0; col < ncals; col++)

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

{
rptr[row][col] = row + cal;
printf("%d ", rptr[row][cal]);
putchar(\n');
}
puts("\n\n\n");

/* and here we illustrate that we are, in fact, dealing with
a2 dimensona array in a_contiguous_ block of memory. */

testptr = aptr;
for(row = 0; row < Nrows; row++)

for(col = 0; col < ncoals; col++)
printf("%d ", * (testptr++));
putchar(\n');

return O;
}

Consider again, the number of callsto malloc()

To get room for thearray itself 1 call
To get room for thearray of ptrs 1 call

Totd 2 cdls

Now, each call to malloc() creates additional space overhead
sincemalloc() is generally implemented by the operating system
forming alinked list which contains data concerning the size of
the block. But, more importantly, with large arrays (several
hundred rows) keeping track of what needs to be freed when the
time comes can be more cumbersome. This, combined with he
contiguousness of the data block which permitsinitialization to
all zeroes using memset() would seem to make the second
alternative the preferred one.

Asafina example on multidimensiona arrays we will
illugrate the dynamic alocation of athree dimensiona array.
This example will illustrate one more thing to watch when doing
thiskind of allocation. For reasons cited above we will usethe
approach outlined in alternative two. Consider the following
code:

#include <stdio.n>
#include <stdlib.h>
#include <mem.h>
#include <conio.h>

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

int X_DIM=16;
intY_DIM=8;
int Z_ DIM=4;

int main(void)

{
char *** space;
char ***Arr3D;
intx,y, z;
ptrdiff_t diff;

/* first we set aside space for the array itself */
space = maloc(X_DIM * Y_DIM * Z_DIM * sizeof(char));
/* next we allocate space of an array of pointers, each

to eventually point to the first element of a

2 dimensional array of pointersto pointers*/

Arr3D = maloc(Z_DIM * sizeof(char **));

/* and for each of these we assign a pointer to a newly
allocated array of pointersto arow */

for(z=0; z< Z_DIM; z++)
{
Arr3D[z] = malloc(Y_DIM * sizeof(char *));
/* and for each space in this array we put a pointer to
thefirst element of each row in the array space
originally allocated */
for(y = 0; y < Y_DIM; y++)
Arr3D[Z][y] = ((char *)space + (z*(X_DIM * Y_DIM) + y*X_DIM));
}

/* And, now we check each addressin our 3D array to seeif
theindexing of the Arr3d pointer leadsthrough in a
continuous manner */

for(z=0; z< Z_DIM; z++)

printf("Location of array %d is %p\n", z, *Arr3D[Zz]);
for(y=0;y < Y_DIM; y++)

printf(" Array %d and Row %d starts at %p", z, y, Arr3D[Z][y]);
diff = Arr3D[Z][y] - (char *)space;
printf(" diff = %d ",diff);
printf(" z=%d y = %d\n", z, y);
}
getch();

return O;
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

If you have followed thistutoria up to this point you
should have no problem deciphering the above on the basis of the
commentsalone. Thereisonelinethat deserves a bit of special
attention however. It reads:

Arr3D[Z][y] = ((char *)space + (z* (X_DIM * Y_DIM) + y*X_DIM));

Note that here "space” is cast to a character pointer, which
isthe sametype as Arr3D[Z][y]. A thing to be careful of,
however, iswherethat cast ismade. If the cast were made
outside the overall parenthesisasin...

Arr3D[Z][y] = (char *)(space + (z* (X_DIM * Y_DIM) + y*X_DIM));

the codefails. Thereason isthat the cast, in this case, is

not so much to make the types on each side of the assignment
operator match, asit isto make the pointer arithmetic work.
Recall that when dealing with pointer arithmetic in something
like:

int *ptr;
ptr = ptr + 1;

the second line increments the pointer by sizeof(int), whichis 2
on MS-DOS machines. Now looking at the mentioned line, it should
be obvious that

(z*(X_DIM * Y_DIM) + y*X_DIM))

calculates the number of array elements Thiswill turn out to be
an arithmetic constant after the calculation. Now since we are
dealing with an array of charactersthe result of the pointer
arithmetic which adds this value to the pointer to the start of
the array should yield a value equal to the pointer value plus
this constant. Were we using an int data type, i.e. casting our
"gpace" pointer to (int *), the actual value by which the pointer
would be incremented would be the cal culated value times
sizeof(int).

->

CHAPTER 10: Pointersto Functions

Up to this point we have been discussing pointersto data
objects. C also permitsthe declaration of pointersto
functions. Pointersto functions have a variety of uses and some
of them will be discussed here.

Consider the following real problem. You want to writea
function that is capable of sorting virtually any collection of
datathat can be stored in an array. Thismight be an array of
strings, or integers, or floats, or even structures. The sorting
algorithm can be the samefor all. For example, it could be a
simple bubble sort agorithm, or the more complex shell or quick

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

sort algorithm. We'll use a simple bubble sort for demonstration
purposes.

Sedgewick [1] has described the bubble sort using C code by
setting up a function which when passed a pointer to the array

would sortit. If we call that function bubble(), a sort program
is described by bubble _1.c, which follows:

#include <stdio.h>
intarr[10] ={ 3,6,1,2,3,8/4,1,7,2};
void bubble(int], int N);
int main(void)
inti;
putchar(\n');
for(i = 0;i < 10; i++)
printf("%d ", arr[i]);
}
bubble(arr,10);
putchar(\n');
for(i=0;i < 10; i++)
printf("%d ", arr[i]);

return O;
}

void bubble(int &[], int N)

inti,], t;
for(i=N-1;i>=0;i--)
for(j =1;j <=1i; j++)
if{(a[J-ll > &[j])

t=afj-1;
alj-1] = &jl;
ajl =t
}
}
[* end bubble 1.c */

The bubble sort is one of the smpler sorts. The algorithm scans
the array from the second to the last element comparing each
element with the one which precedesiit. If the one that precedes
it islarger than the current element, the two are swapped so the
larger oneiscloser to theend of the array. On the first pass,
thisresultsin thelargest element ending up at the end of the
array. Thearray isnow limited to all elements except the last
and the process repeated. This putsthe next largest element at

a point preceding the largest element. The processis repeated

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

for anumber of times equal to the number of eements minus 1.
The end result is a sorted array.

Here our function is designed to sort an array of integers.
Thusin line 1 we are comparing integers and in lines 2 through 4
we are using temporary integer storage to store integers. What
we want to do now is seeif we can convert this code so we can
use any datatype, i.e. not berestricted to integers.

At the same time we don't want to have to analyze our
algorithm and the code associated with it each time we use it.
We start by removing the comparison from within the function
bubble() so asto makeit relatively easy to modify the
comparison function without having to re-write portions related
the actual algorithm. Thisresultsin bubble 2.c:

I* bubble 2.c */
[* Separating the comparison function */

#include <stdio.h>
intarr[10] ={ 3,6,1,2,3,8,4,1,7,2};

void bubble(int], int N);
int compare(int m, int n);

int main(void)
t
inti;
putchar(\n');
for(i = 0;i < 10; i++)

printf("%d ", arr[i]);
}
bubble(arr,10);
putchar(\n');
for(i = 0;i < 10; i++)
printf("%d ", arr[i]);

return O;
}

void bubble(int], int N)

inti,j, t;

for(i=N-1;i>=0;i--)

for(=1;j <=i;j++)
if{(compare(a[J-ll. a[j]))

t=a[j-1];
aj-1] = 4jl;
}a[J] =t

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

int compare(int m, int n)
{
return (m > n);

}
[¥ e end of bubble_2.c */

If our goal isto make our sort routine data type independent,
one way of doing thisisto use pointersto type void to point to
the dataingtead of using theinteger datatype. Asastartin
that direction let's modify a few things in the above so that
pointers can be used. To begin with, well stick with pointers
to type integer.

/* bubble 3.c */
#include <stdio.h>

int arr[10] ={ 3,6,1,2,3,8,4,1,7,2};

void bubble(int *p, int N);
int compare(int *m, int *n);

int main(void)
L
inti;
putchar(\n');
for(i = 0;i < 10; i++)

printf("%d ", arr[i]);

}

bubble(arr,10);
putchar(\n’);

for(i = 0;i < 10; i++)

printf("%d ", arr[i]);

return O;
}

void bubble(int *p, int N)
{
inti,], t;
for(i=N-1;i>=0;i--)
for(j =1;j <=i;j++)
if{(compare(& pli-11, &p(i])

t=p[j-1];
pl-11 = plil;
pll =t
}
}

int compare(int *m, int *n)
{
return (*m > *n);

}
L — end of bubble3.c */

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Note the changes. We are now passing a pointer to an integer (or
array of integers) to bubble(). And from within bubble we are
passing pointers to the elements of the array that we want to
compareto our comparison function. And, of course we are
dereferencing these pointer in our compare() function in order to
make the actual comparison. Our next step will be to convert the
pointersin bubble() to pointersto type void so that that

function will become more type insendtive. Thisisshownin

bubble 4.
S — bubble 4.c */
#include <stdio.h>

int arr[10] ={ 3,6,1,2,3,8,4,1,7,2};

void bubble(int *p, int N);
int compare(void *m, void *n);

int main(void)
t
inti;
putchar(\n');
for(i = 0; i < 10; i++)

printf("%d ", arr[i]);

}

bubble(arr,10);
putchar(\n');

for(i = 0;i < 10; i++)

printf("%d ", arr[i]);

return O;
}

void bubble(int *p, int N)
{
inti,], t;
for(i=N-1;i>=0;i--)
for(j = 1;j <=i;j++)
if{(compare((void *)&p[j-1], (void *)&plj]))

t=pfj-1;
pl-1] = plil;
plil =t
}
}

int compare(void *m, void *n)

int *m1, *nl;
ml=(int *)m;
nl = (int *)n;
return (*m1 > *nl);

}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Note that, in doing this, in compare() we had to introduce the
casting of the void pointer types passed to the actua type being
sorted. But, aswell seelater that'sokay. And sincewhat is
being passed to bubble() is still a pointer to an array of

integers, we had to cast these pointersto void pointers when we
passed them as parametersin our call to compare().

We now address the problem of what we pass to bubble(). We want
to makethe first parameter of that function avoid pointer aso.

But, that meansthat within bubble() we need to do something

about the variablet, which is currently an integer. Also, where
weuset = p[j-1]; thetype of p[j-1] needsto be known in order

to know how many bytes to copy to the variable t (or whatever we
replace t with).

Currently, in bubble_4.c, knowledge within buffer() asto the
type of the data being sorted (and hence the size of each
individual element) is obtained from the fact that the first
parameter isapointer to type integer. If we are going to be
able to use bubblg() to sort any type of data, we need to make
that pointer a pointer to type void. But, in doing so we are
going to lose information concerning the size of individual
elementswithin thearray. So, in bubble 5.c we will add a
separate parameter to handle this size information.

These changes, from bubbled.c to bubbleb.c are, perhaps, a bit
more extensive than those we have made in the past. So, compare
the two modules carefully for differences.

I* bubble5.c */
#include <stdio.h>
#include <string.h>

long arr[10] ={ 3,6,1,2,3,8,4,1,7,2};

void bubble(void *p, Sze_t width, int N);
int compare(void *m, void *n);

int main(void)
L
inti;
putchar(\n');
for(i=0;i < 10; i++)
printf("%d ", arr[i]);
}
bubble(arr, sizeof(long), 10);
putchar(\n');
for(i=0;i < 10; i++)
printf("%d ", arr[i]);

return O;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

void bubble(void *p, sze t width, int N)

{

inti, j;

unsigned char buf[4];

unsigned char *bp = p;

for(i=N-1;i>=0;i--)

for(=1;j <=i;j++)
if (compare((void *)(bp + width* (j-1)), (void *)(bp + j*width))) /* 1*/

{
I t=plj-1;

memcpy(buf, bp + width* (j-1), width);
ropli-1 =plil; */

memcpy(bp + width*(j-1), bp + j*width , width);
I plil =t; */

memcpy(bp + j*width, buf, width);

}

int compare(void *m, void *n)
{
long *m1, *nl;
m1 = (long *)m;
nl = (long *)n;
return (*ml > *nl);
}
[* e end of bubbleb.c ----------m-mamnmno- */

Note that | have changed the data type of the array from int to
long to illustrate the changes needed in the compare() function.
Within bubble I've done away with the variable t (which we would
have had to change from typeint to type long). | have added a
buffer of size 4 unsgned characters, which isthe size needed to
hold along (thiswill change again in future modificationsto

this code). The unsigned character pointer *bp is used to point

to the base of the array to be sorted, i.e. to the first element

of that array.

We also had to modify what we passed to compare(), and how we do
the swapping of elements that the comparison indicates need
swapping. Use of memcpy() and pointer notation instead of array
notation work towards this reduction in type sensitivity.

Again, making a careful comparison of bubble5.c with bubbled.c
can result in improved understanding of what ishappening and
why.

We move now to bubbl e6.c where we use the same function bubbl ()
that we used in bubbleb.c to sort stringsingtead of long

integers. Of course we have to change the comparison function
since the means by which strings are compared is different from

that by which long integers are compared. And,in bubble6.c we
have del eted the lines within bubble() that were commented out in
bubble5.c.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

#include <stdio.h>
#include <string.h>

#define MAX_BUF 256
long arr[10] ={ 3,6,1,2,3,8,4,1,7,2};

char arr2[5][20] ={ "Mickey Mouse",
"Donald Duck",
"Minnie Mouse",
"Goofy",
"Ted Jensen" };

void bubble(void *p, int width, int N);
int compare(void *m, void *n);

int main(void)

L
inti;
putchar(\n');
for(i=0;i<5; i++)

printf("%s\n", arr2[i]);

}

bubble(arr2, 20, 5);
putchar(\n\n');

for(i =0;i<5; i++)

printf("%s\n", arr2[i]);
}
return O,

}

void bubble(void *p, int width, int N)
{
inti,j, k;
unsigned char buf[MAX_BUF];
unsigned char *bp = p;
for(i=N-1;i>=0;i--)
for(j =1;j <=1i; j++)

k = compare((void *)(bp + width*(j-1)), (void *)(bp + j*width));

if (k> 0)
{
memcpy(buf, bp + width* (j-1), width);
memcpy(bp + width*(j-1), bp + j*width , width);
memcpy(bp + j*width, buf, width);
}

}
}

int compare(void *m, void *n)

{
char *ml=m;
char *nl=n;

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

return (stremp(mi,nl));
}

But, the fact that bubble() was unchanged from that used in
bubbleb.c indicates that that function is capable of sorting a
wide variety of datatypes. What isleft to do isto passto
bubble() the name of the comparison function we want to use so
that it can be truly universal. Just asthe name of an array is

the address of the first element of the array in the data

segment, the name of a function decays into the address of that
function in the code segment. Thuswe need to use a pointer to a
function. In this case the comparison function.

Pointers to functions must match the functions pointed to in the
number and types of the parameters and the type of thereturn
value. In our case, we declare our function pointer as:

int (*fptr)(const void *pl, const void *p2);
Note that were we to write:
int *fptr(const void *pl, const void *p2);

we would have a function prototype for a function which returned
apointer totypeint. That isbecausein C the parenthesis ()
operator have ahigher precedence than the pointer * operator.

By putting the parenthesis around the string (*fptr) we indicate
that we are declaring a function pointer.

We now modify our declaration of bubble() by adding, asits 4th
parameter, afunction pointer of the proper type. It's function
prototype becomes:

void bubble(void *p, int width, int N,
int(*fptr)(const void *, const void *));

When we call the bubble(), we insert the name of the comparison
function that we want to use. bubble7.c illustrate how this
approach permits the use of the same bubbl () function for
sorting different types of data.

#include <stdio.h>

#include <string.h>

#define MAX_BUF 256

long arr[10] ={ 3,6,1,2,3,8,4,1,7,2};

char arr2[5][20] ={ "Mickey Mouse",
"Donald Duck",
"Minnie Mouse",

"Goofy",
"Ted Jensen” };

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

void bubble(void *p, int width, int N,
int(*fptr)(const void *, const void *));

int compare_string(const void *m, const void *n);

int compare_long(const void *m, const void *n);

int main(void)

inti;
puts("\nBefore Sorting:\n");
for(i = 0;i < 10; i++) [* show thelong ints */

{
printf("%ld ", arr[i]);

puts("\n");
for(i=0;i<5; i++) [* show the strings */

printf("%s\n", arr2[i]);

}

bubble(arr, 4, 10, compare_long); /* sort thelongs */
bubble(arr2, 20, 5, compare_string); /* sort the strings*/
puts("\n\nAfter Sorting:\n");

for(i=0; i< 10; i++) [* show the sorted longs */

printf("%d ",arr[i]);

}
puts("\n");
for(i = 0;i<5; i++) [* show the sorted strings*/

printf("%s\n", arr2[i]);
}

return O;
}

void bubble(void *p, int width, int N,
int(*fptr)(const void *, const void *))
{

inti,j, k;
unsigned char buf[MAX_BUF];
unsigned char *bp = p;
for(i=N-1;i>=0;i--)

for(j =1;j <=1i; j++)

k = fptr((void *)(bp + width* (j-1)), (void *)(bp + j*width));
if (k> 0)

memcpy(buf, bp + width* (j-1), width);
memcpy(bp + width*(j-1), bp + j*width , width);
memcpy(bp + j*width, buf, width);
}
}
}

int compare_string(const void *m, const void *n)
{

char *ml = (char *)m;

char *nl = (char *)n;

return (stremp(mi,nl));

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

}
int compare_long(const void *m, const void *n)

long *m1, *n1;

m1 = (long *)m;
nl = (long *)n;
return (*m1 > *nl);

}

Pointers and arrays - Storage and parameter passing

When dealing with arrays, it may help to think about the task of the
compiler. Given:

type array[num;

‘array’ is areference to the beginning of the block of memory allocated

for the array. The amount of memory needed to store the array isnum *
sizeof(type). The compiler figures out how to index through the array by
multiplying the subscript times the sizeof the type and adding the result

to a pointer to the base of the block. Thus, for:

float fAry[10];

fAry can be thought of asafloat* that points to the beginning of the
block allocated to the array. We find the first element (subscript 0), by
calculating (subscript * sizeof(type) + base) = (0 * sizeof(float) +
fAry). Obvioulsy, the first element is at the base. The second element is
four bytesin from the base at (fAry + 4 * sizeof(float)). And so on.

So, the key for the compiler to be able to generate proper indexing through
the array, is that the compiler know the size of the type contained in the
array. If thetypeisfloat, then element O is at base, and element 1is

at baset4. If thetype isastructure of 50 bytes, then element 1 would be
at baset+50.

For atwo-dimensional array, the block of memory is contiguous and the
left-most index is the major increment. The array ary[5][10] can be looked
at asan array containing 5 units of ary[10]. The elements ary[0][O]
through ary[0][9] are contiguous, and the next element isary[1][0]. Here,
to increment through the ten elements of ary[0][0] thruough ary[0][9], the
compiler must again know the size of the type contained in the array. But
to increment to the beginning of the second set of ten elements, the
compiler must know both the size of the type and the size of the minor

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

increment. For int ary[i][j], the beginning of ary[i] isat ary + i * (max
]) * sizeof(type), whichwould beary + i * 10 * 2. So the second
element would start a 20 bytes offset from the base of the block.

At asimple level, thereis no real difference between char* cPtr and

char[] cAry. Both labels cPtr and cAry are references to the beginning of
ablock of memory allocated to store elements of type char. However, there
are some distinct differences in the way memory is allocated for them. Let
us consider the following declarations being made as local (automatic)
variables:

char *ptrl;

char *ptr2 = "method 1";
char ptr3[9] = "method 2";
char ptr4[] = "method 3";

The size of a pointer, sizeof(void*), is either 2 or 4 bytes depending on
the memory model. We will assume the large memory model, where pointers
are 4 bytes.

Inthefirst case, 4 bytes are allocated on the stack for ptrl. However,
no memory has been allocated to which ptrl might refer, and the value of
ptrlisundefined. ptrliscalled an uninitialized pointer.

In the second case, 4 bytes are allocated for ptr2 on the stack, and 9

bytes are allocated in the data segment. The bytesin the data segment are
initialized with the string literal "method 1" (allowing one for the null
terminator), and ptr2 isinitialized to point to the 9 bytes in the data
segment.

In the third case, when the function is called, 9 bytes are allocated on

the stack, and those 9 bytes are initialized with the values of the
charactersin the string literal "method 2". Where do the bytes come from?
The string literal has been stored in the data segment. When your function
is called, the space is allocated on the stack and the string literal is

copied into those bytes. Using this method, process time is lost to copy
the bytes, and during the execution of your function, the string actually
exists in two places, the original copy in the data segment, and the local
copy on the stack.

The fourth case works just like the third, except the compiler figures out
for you the length of the literal.

When declared as global variables, there are some distinct differences.

ptrlisstill an uninitialized pointer, but the 4 bytes allocated to hold
the pointer are now in the data segment instead of on the stack. The4

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

bytes for ptr2 are also in the data segment; so now we have a 4-byte
pointer in the data segment that point to a 9-byte block, also in the data
segment, which holds the string literal "method 2". For ptr3 and ptr4,
space is never allocated on the stack, there is only one copy ever of the
literal, and using the variables ptr3 or ptr4 is the same as manipulating a
pointer to the string.

When declared as local variables, the most efficient is the method used for
ptrl. Declared as global variables, the most efficient are ptr3 and ptr4.

Now let's look at passing these arraysto functions. int* iptr pointsto
aninteger. If | passiptr to afunction, then that function can use iptr

to access and modify the value pointed to by iptr. But, the function only
gets a copy of iptr, so if the function modifies its copy of the pointer,

the calling function will neither know nor be affected. Thisisimportant
when passing an uninitialized pointer to afunction that will allocate
memory and initialize the pointer to point to that block of memory. Since
this requires the pointer itself to be modified, we must tell the function
where the pointer is, or pass a pointer to the pointer.

There isa subtlety here with respect to arrays. If | declare a function:
void foo(int fooAry[10Q]);

then it would seem that 2 * 10 = 20 bytes are going to be passed on the
stack. However, inthe case of arrays, what actually gets passed isa
pointer to the array - just sizeof(void*) bytes. Also, sincethe

function actually receives a pointer to the array, and not alocal copy, if
function foo modifies the array, then the calling routine could end up with
corrupted data. So, the following call to function foo could result in
mainAry being modified in foo!

main() {
int mainAry[10];
foo(mainAry);

}

Although they are similar, the same rule does not hold for structs. A
struct is passed by value, so passing a struct of 50 bytes will allocate 50
bytes on the stack.

Isthe following example correct and will the array iAry be modified?
void foo(int* iptr) {

iptr[2] =5;
}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

main() {
int iAry[10];
foo(iAry);
}

Yes. Sincethe compiler knowsthe type, it knows how to index through the
array in function foo. Howver, we must ensure that we don't try to make it
index beyond the tenth element because this is all the memory that has been
allocated.

The following shows how to pass atwo-dimensional array:

void fool(float ary[5][10]) {}
void foo2(float ary[][10Q]) {}

main() {
float fAry[10][10];
fool(fAry);
foo2(fAry);

}

Notice that fool and foo2 both accomplish the same thing. The compiler
does not need to know the value of the major (left-most) dimension.
However, could we declare this?

void foo3(float ** ary) {}

No. How would the compiler know how to index into the array? It's easy
enough to figure out where ary[0][0] through ary[0][9] are; but, how does
the compiler know where ary[1][0] is? It must know the extent of the
second dimension. However, the above function definition is correct.
Only, ary isapointer to a pointer to type float, which is more commonly
viewed as an array of pointersto type float. So, ary[0] is of type

float*, a pointer to one float, or an array of floats. Allocating the

array of pointers, which are 4 bytes each, to each point to asingle float,
also 4 bytes, would not be efficient. 1f we used it as areference to an
array of floats, then it might be useful; but, we would either have to make
arrays refered to by each of the pointers in the array the same
predetermined length, or have some means of finding the end of each of
those arrays. The usefulness of such a data structure is not readily
apparent for floats, but for arrays of type char (or strings), it makes

more sense.

| can implement two-dimensional arrays of type char in the same fashion and
treat them as an array of strings. However, strings are often of different

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

lengths. Consider an array of 10 strings where the longest string is 10
characters. A two-dimensional array would be:

#define maxLen 11
#define maxitems 10
char myString[maxltems][maxLen];

The overall size of the array myStringsis 10 * 11 * sizeof(char) = 110
bytes. If the strings are not all 10 characters long, there will be wasted
space. Of course, this may not be significant. But, there is another way
of accomplishing this. Consider the following:

char * myStringsl maxltems];
char * myStrings2[];
char ** myStrings3;

Thefirst isan aarray of 10 pointers to type char. Each of the 10
pointersin the array are uninitialized, and must be initialized using some
form of dynamic memory allocation such as calls to malloc.

myStrings2 is a pointer to an array of pointers. But, no memory has been
alocated to hold that array. So to useit, we must first allocate space

to hold the array. Then we can initailize the elements of the array, each
of them a pointer to type char, by a separate allocation and initialization
for each of them. myStrings3, a pointer to a pointer to type char, works
the same as myStrings2. Just asint *iptr can be looked at as an array of
integers, so can char ** myStrings3 be viewed as a pointer to a pointer to
type char, or, an array of pointers to type char. Thusto use it we must
first allocate space to hold the array:

myStrings = (char**) malloc(nitems * sizeof(char *));

Lets say that nitems = 10 and we are till using the large memory model.
The amount of allocated space is 10 * 4 = 40 bytes, which is just enough to
hold ten char pointers. Now we must allocate space for each of the

strings, and initialize the corresponding pointer in the array to reference
that allocated block of memory. In our example, we will do thisin aloop:

for(1=0; i<nltems; i++)
myStringg[i] = (char*) malloc(maxLen + 1);

Why is this possibly better than just declaring myStringg] nltems][maxLen]?
One reason isthat it moves the structure into the far heap (in our memory
model) where there is more memory than in the data segment or on the stack.
Another isthat using this technique, we can create atwo-dimensional array
(an array of strings or amultiple dimensional array of any type) that is

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

effectively >64K. Aslong as neither the block that holds my array of
pointers nor any of the blocks allocated for each of those pointers
exceeds 64K, | can successfully access datathat isin a structure format
which totals well over a segment, or even several segments. Another is
that | don't have to allocate the same amount of space for each of the
strings. By definition, a string is terminated with anull (\0"). Since
we have a convenient method of finding the end of the array (unlike the
example for floats), thisis easy to use for strings.

S0, now lets say we want to pass this array of stringsto afunction. In
the first case, we only want to use the strings to display them.

void Show(char ** strings)
{

puts(string[1]);
}

The above will display the second string in my array of strings. This
method of passing the strings will also allow us to modify the contents of
each of the strings, or even initialize each of the pointersin the array,
since it is actually passed a pointer which refers to the base of the array
that holds the pointersto each of the strings. Now suppose | want to
initialize the pointer to the actual array. In my main function, | have
merely declared char **myStrings, and | want to allocate space for the
array of pointers and for each of the items to which those pointers will
point, all in afunction. We might do that like this.

#include <stdio.h>
#include <string.h>
#include <alloc.h>

void foo(char *** ary, int nitems, int maxLen) {
inti;
*ary = (char**) malloc(nltems* sizeof(char*));
for(i=0; i<nltems; i++)
(*ary)[i] = (char*) malloc(maxLen + 1); /* sizeof(char) =1 */
srepy((*ary)[0], "The wonderful world of pointers!™);
}

void main() {
char **myStrings,
foo(&myStrings, 5, 40);
puts(myStringg 0]);

}

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

kkhkhkkkhhkkkhhkhkkhhkhkkhhhkhhhkhhhkhkhhkhkhkkhkikkhkkkx Good LUCk Hdpmate Uw

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

