Input and Output

Chapter 7 K &R deals with Input and Output



Input and Output

Input and Output facilities are not a part of the C
language.

All I/O operations must be carried out through
function calls.
e.g. getchar (), printf (), scanf ()

Since these functions are not a part of the language itself
they may differ from one machine to another.

The ANSI standard defines these (and other)
library functions to ensure compatibility of systems that
run C



Standard Library

The standard library provides a set of functions
for C programes:

Input and Output

String Handling

Storage Management

Mathematical Routines

- etc...



Standard Library

The properties of library functions are included in several
headers such as :

<stdio.h>, <string.h>, <ctype.h>,
e.g. #include < stdio.h>

This include file contains declarations and macro
definitions associated with Standard I/O Library.

Whenever using a function from this library we include
this file at the front of the program.



Stream Model for Standard I/0O

The model of input and output supported by the
Standard Library is a simple one.

Text mput or output regardless of its origin or destination
1s modeled as a stream of characters.

A text stream 1s a sequence of characters divided into
lines. Each line consists of zero or more characters
followed by a newline character.



Stream Model for Standard I/O (contd)

It 1s the responsibility of the library to make each input or
output stream conform to this model.

for e.g. the library may convert Carriage Return (CR) and
Line Feed (LF) to newline on input and back again on
output.

A C program using the library need not worry about how
lines are represented outside the program.



getchar ()

The simplest input mechanism to read one character at a
time from the standard input (keyboard) is

int getchar (void)

getchar returns the next input character each time it is
called, or EOF when it encounters end of file. EOF is a
symbolic consatnt defined in <stdio.h>.

Typically EOF has the value -1. But tests should be
written in terms of EOF as to be independent of the
specific value.

e.g. while ((c = getchar()) != EOF)
putchar (c);



Input Redirection

A file may be substituted for the keyboard by input
redirection:

prog <infile
The above command line causes the program prog that
uses getchar to read characters from the file infile

( instead of reading from the keyboard)

Here the switching of the iput is done in a way that the
program prog itself 1s unaware of the change.



Input Redirection

A pipe (| ) allows the output of a program to form the
input of another program .

who | grep john | we -1

Input switching is also mvisible if the input comes from
another program via a pipe mechanism.

e.g progl | prog2
causes the standard output of progl to be piped into the
standard input for prog2



Output and Output Redirection

int putchar (int)

The function putchar (c¢) puts the character ¢ on the
standard output (screen by default).

putchar returns the character written or EOF 1if an error
occurs.

printf output goes to standard output

prog >outfile
will write the standard output to outfile instead.

progl | prog?2
puts the standard output of progl to the standard input
of prog2.



Formatted Output - printf

int printf( char *format, argl, arg2, ... )
printf function converts, formats, and prints its
argument on the standard output under control of

format.

It returns the number of characters printed.



Formatted Output - printf

int1 =425;
printf ("% d %0 %x %X\Wn", 1, 1, 1,1);

The output will be
425 651 1a9 1A9

floatf = 12.978;
printf (" % 7.2f %7.2e\n", f, 1);

The output will be
12.98 1.30e+01



Formatted Output - printf

double d =-97.4583;
printf (" % .*f\n" , 3, d);

The asterisk after the period in the format
specification instructs printf to take the next
argument to the function as the value of the
precision.

The output will be
-97.458



Formatted Output - printf

char s[ ] = "abcdefghi)";
printf (" % .5s\n" , s);

The output will be
abcde

printf (" % .*s\n" , max, s);
To print at most max characters from string s

printf (" %15s\n" , s);
abcdefghyy /* right justified output */

printf (" %-15s\n" , s);
abcdefghi; /* left justified output */



Formatted Output - sprintf

int sprintf( char *string, char *format, argl, ... )
sprintf ( ) formats the arguments argl, ...,
according to the format and places the result in
string.

sprintf (text, "%d + %d", 20, 50);

will place the character string "20 + 50" 1n text



Formatted Input - scanf

int scanf( char *format, argl, arg2, ... )

scanf function 1s the imnput analog of printf
providing many of the same conversion facilities
in the opposite direction.

scanf reads the characters from standard input,
interprets them according to specification in
format and stores the results through the
remaining arguments.

Each of the arguments (1.e. argl, arg2, ...)
must be a pointer



Formatted Input - scanf

scanf stops when it exhausts the format string or
when some 1nput fails to match the control
specification.

scanf returns as its value the number of
successfully matched and assigned input items

On the end of file, EOF 1s returned



Formatted Input - scanf

scanf (" % d:%d:%d" , &hour, &minutes,&seconds);

Three integer values are to be read and stored in the
variables hour, minutes and seconds respectively.

Here 1n the format string the : characters specify that
colons are expected as separaters between the three
integer values.

scanf (" %d%% " , &percentage);
To specify a percentage sign 1s expected as input.



Formatted Input - scanf

scanf ("%d%c", &1, &c¢);
with the text line

29 w
would assign the value 29 to 1 and a blank space
character to ¢ since this 1s the character that
appears immediately after the character 29 on the
input.

scanf ("%d %c", &i, &c);

would assign the value 29 to1and w to ¢ ( here
scanf 1gnores all leading white spaces after 29 1s

read)



Formatted Input - sscanf

int sscanf( char *string, char *format, argl, ... )

sscanf reads from a string instead of the standard
input, according to the format specification and
stores the results through argl, ...

sscanf ("Nov 28", "%s%d", month, &day);

stores the string "Nov" inside month, assumed to
be a character array, and will assign the integer
value 28 to day (an integer variable)



File Access

stdio.h contains a structure declaration called
FILE

A file has to be opened before reading or writing

The file has to be opened using the library
function fopen

fopen takes the file name and returns a pointer
called file pointer which can be used for
subsequent reading or writing of the file.



fopen ()

FILE *fp;  /* declares fp as a pointer to FILE */
FILE *fopen (char *name, char *mode);

fp = fopen (name, mode);

where name 1s a character string containg the
name of the file and

mode also a character string indicates how one
intends to use the file.

Allowed modes are read ("r"), write ("w") and
append ("a"),



fopen ()

FILE *fp;  /* declares fp as a pointer to FILE */
FILE *fopen (char *name, char *mode);

fp = fopen ("data file", "r");

opens a file called data file in read mode

and assigns to fp the unique pointer that identifies
the file.

If the file cannot be opened for some reason , then
fopen() returns the value NULL (also defined 1n
the standard I/O include file)



fopen ()

FILE *fp;  /* declares fp as a pointer to FILE */
FILE *fopen (char *name, char *mode);

if ( (fp = fopen ("data file", "r") ) == NULL)
printf ( " file cannot be opened \n");

will indicate whether the fopen () 1s successful or
not.



getc () and putc ()

int getc ( FILE *{p);

getc returns the next character from the file
referred to by fp , it returns EOF for end of file or
CITor.

naturally getc 1s used for reading a file.

int putc ( int ¢, FILE *fp);

putc writes a character ¢ to the file fp and returns
the character written or EOF 1f error occurs.



fscanf () and fprintf ()

fscanf ( ) and fprintf ( ) used for formatted input
and output of files respectively

int fscanf (FILE *fp, char *format, ...)

int fprintf (FILE *fp, char *format, ...)



fclose ()

int fclose (FILE *fp )

fclose 1s the inverse of fopen, 1t breaks the
connection between the file pointer and the
external name that was established by fopen (),
freeing the file pointer for another file.



stdin, stdout, stderr

Whenever a C program is executed, three "files" are
automatically opened by the system for use by the
program.

These files are identified by the constant FILE pointers
stdin, stdout and stderr which are defined in stdio.h

The FILE pointer stdin identifies the standard input of
the program and is associated with the terminal.

stdout 1s the standard output treated similarly



stdin, stdout, stderr

The FILE pointer stderr 1dentifies the standard error

file. The error messages produced by the program are
written here.

stderr 1s normally associated with the terminal

if ((fp = fopen ("data file", "r") ) == NULL)
fprintf ( stderr,"file cannot be opened \n");



exit ()

A program can signal error in two ways:

stderr and exit

exit () terminates program execution when it 1s called.
The argument of exit () 1s available to whatever

process called this one.

return value 0 signals no error. Non zero values
usually signals abnormal situations.



