
Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 1

Teaching of Pointers in C
Version 2.0, 2003

Dr Achuthsankar S. Nair, University of Kerala

1 INTRODUCTION

Pointers are one of the most basic features of C which is both the strength and weakness of
C. The full appreciation of the use of pointers will be possible only when you become an
experienced C programmer. However, to start using pointers, all you need to know is a
clear picture of the computer’s memory. Let us study that first.

2 THE MAIN MEMORY

All the variables we have been using (and indeed, the program itself) reside in the memory
when the program is executed. The organization of the memory is rather straightforward.
It is a sequence of large number of memory locations, each of which has an address. Each
memory location is capable of storing a small number (0 to 256), which we call a byte. A
char data has 1 byte in size and hence needs one memory location of the memory. Both
integer and float need 4 bytes each, or 4 locations(The size needed for a particular type
varies with the platform in which the program is run. Even if an integer / float number is
small, it will still occupy 4 locations. The following pictures in figure 1.2 represent these
facts.

Memory
Location

Fig 1. The Computer Memory

0
1
2
3
4
5
.
.
.

27576
27577
27578
27579
27580

81
82

.

.

Address

One
location
=1 byte

65

1000

256.75

0
1
2
3
4
5
.
.
.

27576
27577
27578
27579
27580

81
82

.

.

char ‘a’ in
memory

(65 = ascii code)

int number 1000
in memory
 (4 bytes)

float number
256.75 in memory

(4 bytes)

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 2

3 THE ADDRESS OF VARIABLES

All the variables that you declare in programs are allocated addresses in the memory. You
can print that out using the & operator which you have already been using in scanf
statements. Study the following program (1.):

If it were possible to ‘peep’ into the computer memory you would be able to see the
following. (see fig 2)

Fig 2
Consider program 2

If it were possible to ‘peep’ into computer memory you would be able to see the
following:(see fig 3)

105
108
197
110
0
7
98
6

.

.
278614
278615
278616
278617
278618
278619

.

Memory
Address

Memory
Location

278615 110

Ascii code of
‘M’

Address of variable x = 278615
Value of x = 110 (‘M’)
Content of address 278615 = 110(‘M’)

Program 1
#include <stdio.h>

main()

{

char x;

x = ‘M’;

printf(“x = %d\n”, x);

printf(“Address of x = %c\n”, &x);

}

Program 2
#include <stdio.h>
main()
{
int x;
x=1000;
printf(“x=%d\n”,x);
printf(“Address of x = %d\n”, &x);
}

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 3

In this case, the value will be stored in 4 locations, not one, since integer requires 4 bytes to
store. How 1000 is ‘sliced’ into 4 pieces, you need not bother now.

Fig 3
Here, what is the address of x? Actually it is 278614, 278615, 278616 and 278617.
However in C we consider the address of C as 278614, the address of first of the 4
locations. This is an important thing to remember and crucial to the understanding of
pointers.

The case of float data type is similar to the integer data type. Whenever variables are
declared, some memory locations get allocated for them. It will be helpful to assume some
addresses and draw the picture of the memory to answer the questions on pointers.

4. THE POINTER VARIABLE

In the previous section we printed out &x which is the address of x. Suppose we need to
store the address in a variable. Then we need a special variable called the pointer. A
pointer variable is one, which can store the addresses of another variable. Study the
following program (3), which uses a pointers variable p.

#include <stdio.h> Program 3
main()
{
int x;
int *p;
x=1000;
p=&x;
printf(“x=%d\n”, x);
printf(“Address of x=%d\n”,p);
}

When you declare x, it gets allocated memory, say 4 locations starting from 333333.
When pointer p is declared, it also gets allocated, say from 333337. When you assign x
=1000; the value occupies the memory 333337 to 333336. Let us see what happens when
you assign p=&x. As in any assignment statement, look at the R.H.S first. &x is the address
of x which is 333333. This occupies the memory location starting from 333337 to 333340.
Thus we can see that the pointer variable is like an int variable in some sense. The pointer
declaration is given as follows:

1000

.

.
278614
278615
278616
278617
278618
278619

.

1000

333333

333333
333334
333335
333336
333337
333338
333339
333340
333341

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 4

int *p; p is a pointer to an integer.

We can similarly declare pointer to char and float.

char *q; q is a pointer to a char.

float *fp; fp is a pointer to float.

What is the difference between a pointer to an integer, character & float? They are all
storing memory addresses, isn’t it? Well, recall that the address of the character is address
of the single location in which the character is stored. But the address of integer / float only
refer to the first address of the 4 locations in which integer / float is stored. That is why we
need to declare a pointer as pointing to a certain data type. In general we can declare
pointers as:

data type *pointer-name;

When assigning values to pointers, we have to take note of the data type to which the
pointer points. For example:

i) int x;
 int *p;
 p=&x; Correct, p is a pointer to an int and &x is the address of an int

ii) int x;
 char *p; Not correct, p is a pointer to a char and &x is the address of an int

 p=&x;

EXERCISE

Predict the output of the following program, or point out mistakes if any. Draw the picture
of the memory for each and assume memory address shown consecutively.

1. #include <stdio.h>
 main()
 {

 int num;
 int *inypoiny;
 num=50;
 intpoint=#
 printf(“The address of num is %d\n”, &num);
 printf(“The address of intpoint %d\n”, &intpoint);
 }

223278
79
80
81
82
83
84
85
86
87

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 5

2. #include <stdio.h>

 main()
 {
 char grade;
 char *cp;
 grade=’D’;
 cp=&grade;
 printf(“Grade is %c\n”, grade);
 printf(“Address of grade is %d\n”, &grade);
 printf(“cp is %d\n”, cp);
 printf(“Address of cp is %d\n”, &cp);
 }

3. #include <stdio.h>
 main()
 {
 int a;
 char b;
 float c;
 int *ap;
 char *bp;
 float *cp;
 ap=&a;
 bp=&b;
 cp=&c;
 printf(“The address of a, b and c are %d %d %d”, ap, bp,cp);
 }

5 POINTER ARITHMETIC

Pointer arithmetic is an interesting aspect of pointers. We have already mentioned that
pointers are very much like integers. C permits the use of some arithmetic operators on
pointer variables. One can meaningfully apply addition and subtraction on pointers (+, -,
++ and --). The results are pleasant surprise. Study the following program (4).

Program 4

#include <stdio.h>
main()
{
char x;
char *p;
x=’M’;
p=&x;
printf(“Pointer value =%d\n”, p);
printf(“Pointer plus one =%d\n”, p+1);
 }

234555
234556
234557
234558
234559
234560
234561
234562
234563
234564

234555
234556
234557
234558
234559
234560
234561
234562
234563
234564

77

223455
56
57
58
59
60
61

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 6

An example output will be:

Pointer value = 234555
Pointer plus one = 234556

Of course, there is nothing surprising here.

Now, change the data type to integer and see program 5.

Program 5
#include <stdio.h>
main()
{
 int x;
 int *p;
 x=1000;
 p=&x;
 printf(“Pointer value = %d\n”,p);
 printf(“Pointer plus one =%d\n”,p+1);
}
An example output will be:

Pointer value = 223455
Pointer plus one = 223439

223455+1=223439 ! That is pointer magic! How does C justify that? Well, 223455 is not
just a number, C knows it is the address of an integer that takes 4 locations. So 223455,
223456, 223457 and 223458 are all together held by the integer. So C interprets +1 as next
free location and gives the answer 223459.

Since float also takes 4 bytes to store, a pointer to float will also show the same effect. We
can say that +1 is interpreted as follows by C:

char address + 1 char address + 1
integer address + 1 integer address + 4
float address + 1 float address + 4

In general, address of any data type + 1 = address of the data type + (size of the data type in
byte). This behavior of C is described as pointer arithmetic in C being scaled according to
the data type.

6 POINTER DE-REFERENCING

So far we have only assigned values to pointers and tried incrementing them. There is
another operation you can do with pointers, known as De-referencing. Before we proceed,
be aware that ‘*’ symbol appears in C language in 4 different situations with four different
meanings. Three of these we have already seen

(i) Comments/*…*/

(ii) arithmetic operator for multiplication as in a*b

(iii) declaring pointer variables as in int *p.

(iv) De-referencing.

1000

223455
56
57
58
59
60
61

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 7

 Now we will consider the fourth situation. Comment is easily recognized and so is
multiplication. The rest of the two situations are related to pointers. When it appears in a
declaration as in a declaration int *p, we just read it as p is a pointer to an integer. After the
declaration, in the body of the program we can use the * with p as *p which is read as De-
reference p. De-referencing can be explained as follows. Every pointer stores some
address. *p means the value stored in that address. To understand *p, we could replace p
with some assumed address. *(333375) means the value stored in location 333375. In this
sense * works in a way exactly opposite to &.

&x = address of variable x.
*p = content of address given by p.

See the program 6:

Program 6
#include <stdio.h>
main()
{
 int x;
 int *p;
 x=100;
 p=&x;
 printf(“x=%d\n”,x); x=100
 printf(“p=%d\n”,p); p=275675
 printf(“*p=%d\n”,*p); *p=100
}

Before you decide the format string for printing *p, please check the data type that p is
pointing to. Before we end this chapter, the final question. What is *(&x) in the above
program? Remember, & and * are opposing operators. You should be able to guess now.

EXERCISE

1. Write the following pointer declarations.
(a) p, a pointer to an integer
(b) char p, a pointer to a character
(c) fp, a pointer to a float
(d) sp a pointer to struct student which has already, been declared. [Hint: Remember

that once a structure is declared, they can be given the some treatment a sint, float,
char]

2. Declare variables of type int, char, float and struct student and then assign their
addresses to the respective pointers declared in Q1.

3. Draw the memory diagram for each of the above cases.

4. Predict the output of each of the following program (draw the memory diagram so
that it will be easy to answer) where memory addresses are to be described; you can
assume any 6-digit number. Assume numbers starting from 333333.

100

275675

223455
223456
223457
223458
223459
223460
223461
223462
223463

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 8

a) int a;
 int *integer_pointer;
 a=222;
 integer_pointer=&a;
 printf(“The value of a a %d\n”, a);
 printf(“The address of a %d\n”,&a);
 printf(“The address of integer_pointer %d\n”, &integer_pointer);
 printf(“Star integer_pointer %d\n”, *integer_pointer);
b) for char
 char a;
 char *char_pointer;
 a=’b’;
 char_pointer=&a;
 printf(“The value of a %d\n”, a);
 printf(“The address of a %d\n”, &a);
 printf(“The address of char_pointer %d\n”, &char_pointer);
 printf(“Star char_pointer %d\n”, *char_pointer);
c) for float
 float a;
 float *float_pointer;
 a=22.25;
 float_pointer=&a;
 printf(“The value of a %d\n”, a);
 printf(“The address of a %d\n”, &a);
 printf(“The address of float_pointer %d\n”, &float_pointer);
 printf(“Star float_pointer %d\n”, *float_pointer);
d) int a, b
 int *ip1, *ip2;
 a=5;
 b=6;
 ip1=&a;
 ip2=ip1;
 printf(“The value of a is %d\n”, a);
 printf(“The value of b is %d\n”, b);
 printf(“The address of a is %d\n”,&a);
 printf(“The address of b is %d \n”&b);
 printf(“The address of ip1 is %d\n”, &ip1);
 printf(“The address of ip2 is %d\n”, &ip2);
 printf(“The value of ip1 is %d\n”,ip1);
 printf(“The value of ip2 is %d\n”, ip2);
 printf(“ip1 dereferenced %d\n”,*ip1);
 printf(“ip2 dereferenced %d\n”, *ip2);
e) int i, j, *ip;

i=1;
ip=&i;
j=*ip;

Achuthsankar S Nair, Teaching of Pointers in C, Unpublished, 2004

 9

*ip=0;
printf(“The value of i %d\n”, i);
printf(“The value of j %d\n”, j);

f) int x, y;
int *ip1, *ip2;
y=1;
ip2=&y;
ip1=ip2;
x=*ip1+y;
printf(“The value of x %d\n”, x);
printf(“The value of y %d\n”,y);

© Achuthsankar S Nair, 2003. This article may be reused without alteration in any form,
provided this notice is retained.

