
5
Pointers and Strings

Objectives
• To be able to use pointers.
• To be able to use pointers to pass arguments to

functions by reference.
• To understand the close relationships among pointers,

arrays and strings.
• To understand the use of pointers to functions.
• To be able to declare and use arrays of strings.
Addresses are given to us to conceal our whereabouts.
Saki (H. H. Munro)

By indirections find directions out.
William Shakespeare

Many things, having full reference
To one consent, may work contrariously.
William Shakespeare

You will find it a very good practice always to verify your
references, sir!
Dr. Routh

You can’t trust code that you did not totally create yourself.
(Especially code from companies that employ people like
me.)
Ken Thompson

320 Pointers and Strings Chapter 5

5.1 Introduction
This chapter discusses one of the most powerful features of the C++ programming lan-
guage, the pointer. Pointers are among C++’s most difficult capabilities to master. In
Chapter 3, we saw that references can be used to perform pass-by-reference. Pointers en-
able programs to simulate pass-by-reference and to create and manipulate dynamic data
structures (i.e., data structures that can grow and shrink), such as linked lists, queues, stacks
and trees. This chapter explains basic pointer concepts. This chapter also reinforces the in-
timate relationship among arrays, pointers and strings and includes a substantial collection
of string-processing exercises.

Chapter 6 examines the use of pointers with structures and classes. In Chapter 9 and
Chapter 10, we will see that the so-called “polymorphic processing” of object-oriented pro-
gramming is performed with pointers and references. Chapter 17 presents examples of cre-
ating and using dynamic data structures.

The view of arrays and strings as pointers derives from C. Later in the book, we will
discuss arrays and strings as full-fledged objects.

5.2 Pointer Variable Declarations and Initialization
Pointer variables contain memory addresses as their values. Normally, a variable directly
contains a specific value. A pointer, on the other hand, contains the address of a variable

Outline
5.1 Introduction
5.2 Pointer Variable Declarations and Initialization
5.3 Pointer Operators
5.4 Calling Functions by Reference
5.5 Using const with Pointers
5.6 Bubble Sort Using Pass-by-Reference
5.7 Pointer Expressions and Pointer Arithmetic
5.8 Relationship Between Pointers and Arrays
5.9 Arrays of Pointers
5.10 Case Study: Card Shuffling and Dealing Simulation
5.11 Function Pointers
5.12 Introduction to Character and String Processing

5.12.1 Fundamentals of Characters and Strings
5.12.2 String Manipulation Functions of the String-Handling Library

5.13 [Optional Case Study] Thinking About Objects: Collaborations
Among Objects

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Special Section: Building Your Own Computer • More Pointer Exercises • String-Manipulation
Exercises • Special Section: Advanced String-Manipulation Exercises • A Challenging String-
Manipulation Project

Chapter 5 Pointers and Strings 321

that contains a specific value. In this sense, a variable name directly references a value, and
a pointer indirectly references a value (Fig. 5.1). Referencing a value through a pointer is
often called indirection. Note that diagrams typically represent a pointer as an arrow from
the variable that contains an address to the variable located at that address in memory.

Pointers, like any other variables, must be declared before they can be used. For
example, the declaration

int *countPtr, count;

declares the variable countPtr to be of type int * (i.e., a pointer to an int value) and
is read, “countPtr is a pointer to int” or “countPtr points to an object of type int.”
Also, variable count in the preceding declaration is declared to be an int, not a pointer
to an int. The * in the declaration applies only to countPtr. Each variable being de-
clared as a pointer must be preceded by an asterisk (*). For example, the declaration

double *xPtr, *yPtr;

indicates that both xPtr and yPtr are pointers to double values. When * appears in a
declaration, it is not an operator; rather, it indicates that the variable being declared is a
pointer. Pointers can be declared to point to objects of any data type.

Common Programming Error 5.1
Assuming that the * used to declare a pointer distributes to all variable names in a declara-
tion’s comma-separated list of variables can lead to errors. Each pointer must be declared
with the * prefixed to the name. 5.1

Good Programming Practice 5.1
Although it is not a requirement, including the letters Ptr in pointer variable names makes
it clear that these variables are pointers and that they must be handled appropriately. 5.1

Pointers should be initialized either when they are declared or in an assignment state-
ment. A pointer may be initialized to 0, NULL or an address. A pointer with the value 0 or
NULL points to nothing. Symbolic constant NULL is defined in header file <iostream>
(and in several other standard library header files) to represent the value 0. Initializing a

Fig. 5.1 Directly and indirectly referencing a variable.

count directly
references a variable
that contains the value 7

7

count

7

countcountPtr
countPtr indirectly
references a variable
that contains the value 7

322 Pointers and Strings Chapter 5

pointer to NULL is equivalent to initializing a pointer to 0, but in C++, 0 is used by con-
vention. When 0 is assigned, it is converted to a pointer of the appropriate type. The value
0 is the only integer value that can be assigned directly to a pointer variable without casting
the integer to a pointer type first. Assigning a variable’s address to a pointer is discussed in
Section 5.3.

Testing and Debugging Tip 5.1
Initialize pointers to prevent pointing to unknown or uninitialized areas of memory. 5.1

5.3 Pointer Operators
The address operator (&) is a unary operator that returns the memory address of its oper-
and. For example, assuming the declarations

int y = 5;
int *yPtr;

the statement

yPtr = &y;

assigns the address of the variable y to pointer variable yPtr. Then variable yPtr is said
to “point to” y. Now, yPtr indirectly references variable y’s value. Note that the & in the
preceding assignment statement is not the same as the & in a reference variable declaration,
which is always preceded by a data-type name.

Figure 5.2 shows a schematic representation of memory after the preceding assign-
ment. In the figure, we show the “pointing relationship” by drawing an arrow from the box
that represents the pointer yPtr in memory to the box that represents the variable y in
memory.

Figure 5.3 shows another representation of the pointer in memory, assuming that
integer variable y is stored at location 600000 and that pointer variable yPtr is stored at
location 500000. The operand of the address operator must be an lvalue (i.e., something
to which a value can be assigned, such as a variable name); the address operator cannot be
applied to constants or to expressions that do not result in references.

Fig. 5.2 Graphical representation of a pointer pointing to a variable in memory.

Fig. 5.3 Representation of y and yPtr in memory.

yyPtr

5

500000 600000 600000 5

yPtr y

Chapter 5 Pointers and Strings 323

The * operator, commonly referred to as the indirection operator or dereferencing
operator, returns a synonym (i.e., an alias or a nickname) for the object to which its pointer
operand points. For example (referring again to Fig. 5.2), the statement

cout << *yPtr << endl;

prints the value of variable y, namely, 5, just as the statement

cout << y << endl;

would. Using * in this manner is called dereferencing a pointer. Note that a dereferenced
pointer may also be used on the left side of an assignment statement, as in

*yPtr = 9;

which would assign 9 to y in Fig. 5.3. The dereferenced pointer may also be used to receive
an input value as in

cin >> *yPtr;

The dereferenced pointer is an lvalue.

Common Programming Error 5.2
Dereferencing a pointer that has not been properly initialized or that has not been assigned
to point to a specific location in memory could cause a fatal execution-time error, or it could
accidentally modify important data and allow the program to run to completion, possibly
with incorrect results. 5.2

Common Programming Error 5.3
An attempt to dereference a variable that is not a pointer is a syntax error. 5.3

Common Programming Error 5.4
Dereferencing a 0 pointer is normally a fatal execution-time error. 5.4

The program in Fig. 5.4 demonstrates the & and * pointer operators. Memory locations
are output by << in this example as hexadecimal integers. (See Appendix C, Number Sys-
tems, for more information on hexadecimal integers.) Note that the hexadecimal memory
addresses output by this program are compiler and operating-system dependent.

Portability Tip 5.1
The format in which a pointer is output is machine dependent. Some systems output pointer
values as hexadecimal integers, while others use decimal integers. 5.1

1 // Fig. 5.4: fig05_04.cpp
2 // Using the & and * operators.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7

Fig. 5.4 Pointer operators & and *. (Part 1 of 2.)

324 Pointers and Strings Chapter 5

Notice that the address of a and the value of aPtr are identical in the output, con-
firming that the address of a is indeed assigned to the pointer variable aPtr. The & and *
operators are inverses of one another—when they are both applied consecutively to aPtr
in either order, the same result is printed.

Figure 5.5 lists the precedence and associativity of the operators introduced to this
point. Note that the address operator (&) and the dereferencing operator (*) are unary oper-
ators on the third level of precedence in the chart.

8 int main()
9 {

10 int a; // a is an integer
11
12
13 a = 7;
14
15
16 cout << "The address of a is " <<
17 << "\nThe value of aPtr is " << ;
18
19 cout << "\n\nThe value of a is " << a
20 << "\nThe value of *aPtr is " << ;
21
22 cout << "\n\nShowing that * and & are inverses of "
23 << "each other.\n&*aPtr = " <<
24 << "\n*&aPtr = " << << endl;
25
26 return 0; // indicates successful termination
27
28 } // end main

The address of a is 0012FED4
The value of aPtr is 0012FED4

The value of a is 7
The value of *aPtr is 7

Showing that * and & are inverses of each other.
&*aPtr = 0012FED4
*&aPtr = 0012FED4

Operators Associativity Type

() [] left to right highest

++ -- static_cast< type >(operand) left to right unary

++ -- + - ! & * right to left unary

Fig. 5.5 Operator precedence and associativity. (Part 1 of 2.)

Fig. 5.4 Pointer operators & and *. (Part 2 of 2.)

int *aPtr; // aPtr is a pointer to an integer

aPtr = &a; // aPtr assigned address of a

&a
aPtr

*aPtr

&*aPtr
*&aPtr

Chapter 5 Pointers and Strings 325

5.4 Calling Functions by Reference
There are three ways in C++ to pass arguments to a function—pass-by-value, pass-by-ref-
erence with reference arguments and pass-by-reference with pointer arguments. Chapter 3
compared and contrasted pass-by-value and pass-by-reference with reference arguments.
This chapter concentrates on pass-by-reference with pointer arguments.

As we saw in Chapter 3, return can be used to return one value from a called func-
tion to a caller (or to return control from a called function without passing back a value).
We also saw that arguments can be passed to a function using reference arguments. Such
arguments enable the function to modify the original values of the arguments (thus, more
than one value can be “returned” from a function). Reference arguments also enable pro-
grams to pass large data objects to a function and avoid the overhead of passing the objects
by value (which, of course, requires making a copy of the object). Pointers, like references,
also can be used to modify one or more variables in the caller or to pass pointers to large
data objects to avoid the overhead of passing the objects by value.

In C++, programmers can use pointers and the indirection operator to simulate pass-
by-reference (exactly as pass-by-reference is accomplished in C programs, because C does
not have references). When calling a function with arguments that should be modified, the
addresses of the arguments are passed. This is normally accomplished by applying the
address operator (&) to the name of the variable whose value will be modified.

As we saw in Chapter 4, arrays are not passed using operator &, because the name of
the array is the starting location in memory of the array (i.e., an array name is already a
pointer). The name of an array is equivalent to &arrayName[0]. When the address of
a variable is passed to a function, the indirection operator (*) can be used in the function to
form a synonym (i.e., an alias or a nickname) for the name of the variable—this in turn can
be used to modify the value of the variable at that location in the caller’s memory.

Figure 5.6 and Fig. 5.7 present two versions of a function that cubes an integer—
cubeByValue and cubeByReference. Figure 5.6 passes variable number by value
to function cubeByValue (line 17). Function cubeByValue (lines 26–30) cubes its

* / % left to right multiplicative

+ - left to right additive

<< >> left to right insertion/extraction

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Operators Associativity Type

Fig. 5.5 Operator precedence and associativity. (Part 2 of 2.)

326 Pointers and Strings Chapter 5

argument and passes the new value back to main using a return statement (line 28). The
new value is assigned to number in main. Note that you have the opportunity to examine
the result of the function call before modifying variable number’s value. For example, in
this program, we could have stored the result of cubeByValue in another variable, exam-
ined its value and assigned the result to number after determining whether the returned
value was reasonable.

Figure 5.7 passes the variable number to function cubeByReference using pass-
by-reference with a pointer argument (line 18)—the address of number is passed to the
function. Function cubeByReference (lines 27–31) specifies parameter nPtr (a
pointer to int) to receive its argument. The function dereferences the pointer and cubes
the value to which nPtr points (line 29). This changes the value of number in main.

Common Programming Error 5.5
Not dereferencing a pointer when it is necessary to do so to obtain the value to which the
pointer points is an error. 5.5

1 // Fig. 5.6: fig05_06.cpp
2 // Cube a variable using pass-by-value.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8
9

10 int main()
11 {
12 int number = 5;
13
14 cout << "The original value of number is " << number;
15
16 // pass number by value to cubeByValue
17
18
19 cout << "\nThe new value of number is " << number << endl;
20
21 return 0; // indicates successful termination
22
23 } // end main
24
25
26
27
28
29
30

The original value of number is 5
The new value of number is 125

Fig. 5.6 Pass-by-value used to cube a variable’s value.

int cubeByValue(int); // prototype

number = cubeByValue(number);

// calculate and return cube of integer argument
int cubeByValue(int n)
{

return n * n * n; // cube local variable n and return result

} // end function cubeByValue

Chapter 5 Pointers and Strings 327

A function receiving an address as an argument must define a pointer parameter to
receive the address. For example, the header for function cubeByReference (line 27)
specifies that cubeByReference receives the address of an int variable (i.e., a pointer
to an int) as an argument, stores the address locally in nPtr and does not return a value.

The function prototype for cubeByReference (line 9) contains int * in paren-
theses. As with other variable types, it is not necessary to include names of pointer param-
eters in function prototypes. Parameter names included for documentation purposes are
ignored by the compiler.

Figure 5.8 and Fig. 5.9 analyze graphically the execution of the programs in Fig. 5.6
and Fig. 5.7, respectively.

Software Engineering Observation 5.1
Use pass-by-value to pass arguments to a function unless the caller explicitly requires that
the called function modify the value of the argument variable in the caller’s environment.
This is another example of the principle of least privilege. 5.1

1 // Fig. 5.7: fig05_07.cpp
2 // Cube a variable using pass-by-reference
3 // with a pointer argument.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9

10
11 int main()
12 {
13 int number = 5;
14
15 cout << "The original value of number is " << number;
16
17 // pass address of number to cubeByReference
18
19
20 cout << "\nThe new value of number is " << number << endl;
21
22 return 0; // indicates successful termination
23
24 } // end main
25
26
27
28
29
30
31

The original value of number is 5
The new value of number is 125

Fig. 5.7 Pass-by-reference with a pointer argument used to cube a variable’s value.

void cubeByReference(int *); // prototype

cubeByReference(&number);

// calculate cube of *nPtr; modifies variable number in main
void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr

} // end function cubeByReference

328 Pointers and Strings Chapter 5

Fig. 5.8 Pass-by-value analysis of the program of Fig. 5.6.

125125

125

int main()
{

int number = 5;

 number = cubeByValue(number);
}

int main()
{

int number = 5;

number = cubeByValue(number);
}

int main()
{

int number = 5;

 number = cubeByValue(number);
}

int main()
{

int number = 5;

 number = cubeByValue(number);
}

int main()
{

int number = 5;

 number = cubeByValue(number);
}

125

int cubeByValue(int n)
{

return n * n * n;
}

int cubeByValue(int n)
{

return n * n * n;
}

int cubeByValue(int n)
{

return n * n * n;
}

int cubeByValue(int n)
{

return n * n * n;
}

int cubeByValue(int n)
{

return n * n * n;
}

number

5

n

number

5

n

number

5

n

number

5

n

number

125

n

Before main calls cubeByValue:

After cubeByValue receives the call:

After cubeByValue cubes parameter n and before cubeByValue returns to main:

After cubeByValue returns to main and before assigning the result to number:

After main completes the assignment to number:

undefined

5

undefined

undefined

5

Chapter 5 Pointers and Strings 329

In the function header and in the prototype for a function that expects a single-sub-
scripted array as an argument, the pointer notation in the parameter list of cubeByRef-
erence may be used. The compiler does not differentiate between a function that receives
a pointer and a function that receives a single-subscripted array. This, of course, means that
the function must “know” when it is receiving an array or simply a single variable for which
it is to perform pass-by-reference. When the compiler encounters a function parameter for
a single-subscripted array of the form int b[], the compiler converts the parameter to the
pointer notation int * const b (pronounced “b is a constant pointer to an integer”—
const pointers are explained in Section 5.5). Both forms of declaring a function param-
eter as a single-subscripted array are interchangeable.

5.5 Using const with Pointers
The const qualifier enables the programmer to inform the compiler that the value of a
particular variable should not be modified.

Fig. 5.9 Pass-by-reference analysis (with a pointer argument) of the program of
Fig. 5.7.

125

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

int main()
{

int number = 5;

 cubeByReference(&number);
}

int main()
{

int number = 5;

 cubeByReference(&number);
}

int main()
{

int number = 5;

 cubeByReference(&number);
}

number

5

nPtr

number

5

nPtr

number

125

nPtr

Before main calls cubeByReference:

After cubeByReference receives the call and before *nPtr is cubed:

After *nPtr is cubed and before program control returns to main:

undefined

call establishes this pointer

called function modifies
caller’s variable

330 Pointers and Strings Chapter 5

Software Engineering Observation 5.2
The const qualifier can be used to enforce the principle of least privilege. Using the prin-
ciple of least privilege to properly design software can greatly reduce debugging time and
improper side effects and can make a program easier to modify and maintain. 5.2

Portability Tip 5.2
Although const is well defined in ANSI C and C++, some compilers do not enforce it prop-
erly. So a good rule is, “know your compiler.” 5.2

Over the years, a large base of legacy code was written in early versions of C that did
not use const, because it was not available. For this reason, there are great opportunities
for improvement in the software engineering of old (also called “legacy”) C code. Also,
many programmers currently using ANSI C and C++ do not use const in their programs,
because they began programming in early versions of C. These programmers are missing
many opportunities for good software engineering.

Many possibilities exist for using (or not using) const with function parameters.
How do you choose the most appropriate of these possibilities? Let the principle of least
privilege be your guide. Always award a function enough access to the data in its parame-
ters to accomplish its specified task, but no more. This section discusses how to combine
const with pointer declarations to enforce the principle of least privilege.

Chapter 3 explained that when a function is called using pass-by-value, a copy of the
argument (or arguments) in the function call is made and passed to the function. If the copy
is modified in the function, the original value is maintained in the caller without change. In
many cases, a value passed to a function is modified so the function can accomplish its task.
However, in some instances, the value should not be altered in the called function, even
though the called function manipulates only a copy of the original value.

For example, consider a function that takes a single-subscripted array and its size as argu-
ments and subsequently prints the array. Such a function should loop through the array and
output each array element individually. The size of the array is used in the function body to
determine the highest subscript of the array so the loop can terminate when the printing com-
pletes. The size of the array does not change in the function body, so it should be declared
const. Of course, because the array is only being printed, it, too, should be declared const.

Software Engineering Observation 5.3
If a value does not (or should not) change in the body of a function to which it is passed, the
parameter should be declared const to ensure that it is not accidentally modified. 5.3

If an attempt is made to modify a const value, a warning or an error is issued,
depending on the particular compiler.

Software Engineering Observation 5.4
Only one value can be returned to the caller when pass-by-value is used. To modify multiple
values in a calling function, several arguments can be passed by reference. 5.4

Good Programming Practice 5.2
Before using a function, check its function prototype to determine the parameters that it can
modify. 5.2

There are four ways to pass a pointer to a function: a nonconstant pointer to noncon-
stant data (Fig. 5.10), a nonconstant pointer to constant data (Fig. 5.11 and Fig. 5.12), a

Chapter 5 Pointers and Strings 331

constant pointer to non-constant data (Fig. 5.13) and a constant pointer to constant data
(Fig. 5.14). Each combination provides a different level of access privileges.

Nonconstant Pointer to Nonconstant Data
The highest access is granted by a nonconstant pointer to nonconstant data—the data can
be modified through the dereferenced pointer, and the pointer can be modified to point to
other data. Declarations for nonconstant pointers to nonconstant data do not include
const. Such a pointer can be used to receive a string in a function that changes the pointer
value to process (and possibly modify) each character in the string. In Fig. 5.10, function
convertToUppercase (lines 27–38) declares parameter sPtr (line 27) to be a non-
constant pointer to nonconstant data. The function processes the string phrase one char-
acter at a time (lines 29–36). Function islower (line 31) takes a character argument and
returns true if the character is a lowercase letter and false otherwise. Characters in the range
'a' through 'z' are converted to their corresponding uppercase letters by function
toupper (line 32); others remain unchanged. Function toupper takes one character as
an argument. If the character is a lowercase letter, the corresponding uppercase letter is re-
turned; otherwise, the original character is returned. Function toupper and function is-
lower are part of the character handling library <cctype>. (See Chapter 18, Bits,
Characters, Strings and Structures.) After processing one character, line 34 increments
sPtr by 1. When operator ++ is applied to a pointer that points to an array, the memory
address stored in the pointer is modified to point to the next element of the array (in this
case, the next character in the string). Adding one to a pointer is one valid operation in
pointer arithmetic, which is covered in detail in Section 5.7 and Section 5.8.

1 // Fig. 5.10: fig05_10.cpp
2 // Converting lowercase letters to uppercase letters
3 // using a non-constant pointer to non-constant data.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 #include <cctype> // prototypes for islower and toupper

10
11 void convertToUppercase();
12
13 int main()
14 {
15 char phrase[] = "characters and $32.98";
16
17 cout << "The phrase before conversion is: " << phrase;
18 convertToUppercase(phrase);
19 cout << "\nThe phrase after conversion is: "
20 << phrase << endl;
21
22 return 0; // indicates successful termination
23
24 } // end main
25

Fig. 5.10 Converting a string to uppercase. (Part 1 of 2.)

char *

332 Pointers and Strings Chapter 5

Nonconstant Pointer to Constant Data
A nonconstant pointer to constant data is a pointer that can be modified to point to any data
item of the appropriate type, but the data to which it points cannot be modified through that
pointer. Such a pointer might be used to receive an array argument to a function that will
process each element of the array, but should not be allowed to modify the data. For exam-
ple, function printCharacters (lines 25–30 of Fig. 5.11) declares parameter sPtr
(line 25) to be of type const char *. The declaration is read from right to left as “sPtr
is a pointer to a character constant.” The body of the function uses a for structure (lines 27–
28) to output each character in the string until the null character is encountered. After each
character is printed, pointer sPtr is incremented to point to the next character in the string.

26 // convert string to uppercase letters
27 void convertToUppercase()
28 {
29 while () { // current character is not '\0'
30
31 if ()) // if character is lowercase,
32 // convert to uppercase
33
34 // move sPtr to next character in string
35
36 } // end while
37
38 } // end function convertToUppercase

The phrase before conversion is: characters and $32.98
The phrase after conversion is: CHARACTERS AND $32.98

1 // Fig. 5.11: fig05_11.cpp
2 // Printing a string one character at a time using
3 // a non-constant pointer to constant data.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 void printCharacters();

10
11 int main()
12 {
13 char phrase[] = "print characters of a string";
14
15 cout << "The string is:\n";
16 printCharacters(phrase);
17 cout << endl;
18

Fig. 5.11 Printing a string one character at a time using a nonconstant pointer to
constant data. (Part 1 of 2.)

Fig. 5.10 Converting a string to uppercase. (Part 2 of 2.)

char *sPtr

*sPtr != '\0'

islower(*sPtr
*sPtr = toupper(*sPtr);

++sPtr;

const char *

Chapter 5 Pointers and Strings 333

Figure 5.12 demonstrates the syntax error messages produced when attempting to
compile a function that receives a nonconstant pointer to constant data, then tries to use that
pointer to modify the data.

19 return 0; // indicates successful termination
20
21 } // end main
22
23 // sPtr cannot modify the character to which it points,
24 // i.e., sPtr is a "read-only" pointer
25 void printCharacters()
26 {
27
28
29
30 } // end function printCharacters

The string is:
print characters of a string

1 // Fig. 5.12: fig05_12.cpp
2 // Attempting to modify data through a
3 // non-constant pointer to constant data.
4
5 void f(const int *); // prototype
6
7 int main()
8 {
9 int y;

10
11
12
13 return 0; // indicates successful termination
14
15 } // end main
16
17 // xPtr cannot modify the value of the variable
18 // to which it points
19 void f()
20 {
21
22
23 } // end function f

d:\cpphtp4_examples\ch05\Fig05_12.cpp(21) : error C2166:
 l-value specifies const object

Fig. 5.12 Attempting to modify data through a nonconstant pointer to constant
data.

Fig. 5.11 Printing a string one character at a time using a nonconstant pointer to
constant data. (Part 2 of 2.)

const char *sPtr

for (; *sPtr != '\0'; sPtr++) // no initialization
 cout << *sPtr;

f(&y); // f attempts illegal modification

const int *xPtr

*xPtr = 100; // error: cannot modify a const object

334 Pointers and Strings Chapter 5

As we know, arrays are aggregate data types that store related data items of the same type
under one name. Chapter 6 discusses another form of aggregate data type called a structure
(sometimes called a record in other languages). A structure can store data items of different
data types under one name (e.g., storing information about each employee of a company).
When a function is called with an array as an argument, the array is passed to the function by
reference. However, structures are always passed by value—a copy of the entire structure is
passed. This requires the execution-time overhead of making a copy of each data item in the
structure and storing it on the function call stack (the place where the local automatic vari-
ables used in the function call are stored while the function is executing). When structure data
must be passed to a function, we can use a pointer to constant data (or a reference to constant
data) to get the performance of pass-by-reference and the protection of pass-by-value. When
a pointer to a structure is passed, only a copy of the address at which the structure is stored
must be made; the structure itself is not copied. On a machine with four-byte addresses, a
copy of four bytes of memory is made rather than a copy of a possibly large structure.

Performance Tip 5.1
Pass large objects such as structures using pointers to constant data, or references to con-
stant data, to obtain the performance benefits of pass-by-reference. 5.1

Software Engineering Observation 5.5
Pass large objects such as structures using pointers to constant data, or references to con-
stant data, to obtain the security of pass-by-value. 5.5

Constant Pointer to Nonconstant Data
A constant pointer to nonconstant data is a pointer that always points to the same memory
location; the data at that location can be modified through the pointer. This is the default
for an array name. An array name is a constant pointer to the beginning of the array. All
data in the array can be accessed and changed by using the array name and array subscript-
ing. A constant pointer to nonconstant data can be used to receive an array as an argument
to a function that accesses array elements using array subscript notation. Pointers that are
declared const must be initialized when they are declared. (If the pointer is a function pa-
rameter, it is initialized with a pointer that is passed to the function.) The program of
Fig. 5.13 attempts to modify a constant pointer. Line 12 declares pointer ptr to be of type
int * const. The declaration in the figure is read from right to left as “ptr is a constant
pointer to an integer.” The pointer is initialized with the address of integer variable x. Line
15 attempts to assign the address of y to ptr, but the compiler generates an error message.
Note that no error occurs when line 14 assigns the value 7 to *ptr—the nonconstant value
to which ptr points can be modified using ptr.

1 // Fig. 5.13: fig05_13.cpp
2 // Attempting to modify a constant pointer to
3 // non-constant data.
4
5 int main()
6 {
7 int x, y;
8

Fig. 5.13 Attempting to modify a constant pointer to nonconstant data. (Part 1 of 2.)

Chapter 5 Pointers and Strings 335

Common Programming Error 5.6
Not initializing a pointer that is declared const is a syntax error. 5.6

Constant Pointer to Constant Data
The least amount of access privilege is granted by a constant pointer to constant data. Such
a pointer always points to the same memory location, and the data at that memory location
cannot be modified using the pointer. This is how an array should be passed to a function
that only reads the array, using array subscript notation, and does not modify the array. The
program of Fig. 5.14 declares pointer variable ptr to be of type const int * const
(line 15). This declaration is read from right to left as “ptr is a constant pointer to an in-
teger constant.” The figure shows the error messages generated when an attempt is made to
modify the data to which ptr points (line 19) and when an attempt is made to modify the
address stored in the pointer variable (line 20). Note that no errors occur when the program
attempts to dereference ptr, or when the program attempts to output the value to which
ptr points (line 17), because neither the pointer nor the data it points to is being modified
in this statement.

9
10
11
12
13
14 *ptr = 7; // allowed: *ptr is not const
15
16
17 return 0; // indicates successful termination
18
19 } // end main

d:\cpphtp4_examples\ch05\Fig05_13.cpp(15) : error C2166:
 l-value specifies const object

Fig. 5.13 Attempting to modify a constant pointer to nonconstant data. (Part 2 of 2.)

// ptr is a constant pointer to an integer that can
// be modified through ptr, but ptr always points to the
// same memory location.
int * const ptr = &x;

ptr = &y; // error: ptr is const; cannot assign new address

1 // Fig. 5.14: fig05_14.cpp
2 // Attempting to modify a constant pointer to constant data.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int main()
9 {

10 int x = 5, y;
11
12 // ptr is a constant pointer to a constant integer.
13 // ptr always points to the same location; the integer
14 // at that location cannot be modified.

Fig. 5.14 Attempting to modify a constant pointer to constant data. (Part 1 of 2.)

336 Pointers and Strings Chapter 5

5.6 Bubble Sort Using Pass-by-Reference
Let us modify the bubble sort program of Fig. 4.16 to use two functions—bubbleSort
and swap (Fig. 5.15). Function bubbleSort (lines 40–52) performs the sort of the array.
Function bubbleSort calls function swap (line 50) to exchange the array elements
array[k] and array[k + 1]. Remember that C++ enforces information hiding be-
tween functions, so swap does not have access to individual array elements in bubble-
Sort. Because bubbleSort wants swap to have access to the array elements to be
swapped, bubbleSort passes each of these elements by reference to swap—the ad-
dress of each array element is passed explicitly. Although entire arrays are passed by ref-
erence, individual array elements are scalars and are ordinarily passed by value. Therefore,
bubbleSort uses the address operator (&) on each array element in the swap call (line
50 to effect pass-by-reference). Function swap (lines 56–62) receives &array[k] in
pointer variable element1Ptr. Information hiding prevents swap from “knowing” the
name array[k], but swap can use *element1Ptr as a synonym for array[k].
Thus, when swap references *element1Ptr, it is actually referencing array[k] in
bubbleSort. Similarly, when swap references *element2Ptr, it is actually refer-
encing array[k + 1] in bubbleSort.

15
16
17 cout << << endl;
18
19
20
21
22 return 0; // indicates successful termination
23
24 } // end main

d:\cpphtp4_examples\ch05\Fig05_14.cpp(19) : error C2166:
 l-value specifies const object
d:\cpphtp4_examples\ch05\Fig05_14.cpp(20) : error C2166:
 l-value specifies const object

1 // Fig. 5.15: fig05_15.cpp
2 // This program puts values into an array, sorts the values into
3 // ascending order and prints the resulting array.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 #include <iomanip>

10

Fig. 5.15 Bubble sort with pass-by-reference. (Part 1 of 3.)

Fig. 5.14 Attempting to modify a constant pointer to constant data. (Part 2 of 2.)

const int *const ptr = &x;

*ptr

*ptr = 7; // error: *ptr is const; cannot assign new value
ptr = &y; // error: ptr is const; cannot assign new address

Chapter 5 Pointers and Strings 337

11 using std::setw;
12
13 void bubbleSort(int *, const int); // prototype
14 void swap(int * const, int * const); // prototype
15
16 int main()
17 {
18 const int arraySize = 10;
19 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
20
21 cout << "Data items in original order\n";
22
23 for (int i = 0; i < arraySize; i++)
24 cout << setw(4) << a[i];
25
26 bubbleSort(a, arraySize); // sort the array
27
28 cout << "\nData items in ascending order\n";
29
30 for (int j = 0; j < arraySize; j++)
31 cout << setw(4) << a[j];
32
33 cout << endl;
34
35 return 0; // indicates successful termination
36
37 } // end main
38
39 // sort an array of integers using bubble sort algorithm
40 void bubbleSort(int *array, const int size)
41 {
42 // loop to control passes
43 for (int pass = 0; pass < size - 1; pass++)
44
45 // loop to control comparisons during each pass
46 for (int k = 0; k < size - 1; k++)
47
48 // swap adjacent elements if they are out of order
49 if (array[k] > array[k + 1])
50 swap(&array[k], &array[k + 1]);
51
52 } // end function bubbleSort
53
54
55
56
57
58
59
60
61
62

Fig. 5.15 Bubble sort with pass-by-reference. (Part 2 of 3.)

// swap values at memory locations to which
// element1Ptr and element2Ptr point
void swap(int * const element1Ptr, int * const element2Ptr)
{

int hold = *element1Ptr;
 *element1Ptr = *element2Ptr;
 *element2Ptr = hold;

} // end function swap

338 Pointers and Strings Chapter 5

Even though swap is not allowed to use the statements

hold = array[k];
array[k] = array[k + 1];
array[k + 1] = hold;

precisely the same effect is achieved by

int hold = *element1Ptr;
*element1Ptr = *element2Ptr;
*element2Ptr = hold;

in the swap function of Fig. 5.15.
Several features of function bubbleSort should be noted. The function header (line

40) declares array as int *array, rather than int array[], to indicate that function
bubbleSort receives a single-subscripted array as an argument (again, these notations
are interchangeable). Parameter size is declared const to enforce the principle of least
privilege. Although parameter size receives a copy of a value in main and modifying the
copy cannot change the value in main, bubbleSort does not need to alter size to
accomplish its task. The array size remains fixed during the execution of bubbleSort.
Therefore, size is declared const to ensure that it is not modified. If the size of the array
is modified during the sorting process, the sorting algorithm will not run correctly.

Note that function bubbleSort receives the size of the array as a parameter, because
the function must know the size of the array to sort the array. When an array is passed to a
function, the memory address of the first element of the array is received by the function.
The array size must be passed separately to the function.

By defining function bubbleSort so it receives the array size as a parameter, we
enable the function to be used by any program that sorts single-subscripted int arrays of
arbitrary size. The size of the array could have been programmed directly into the function.
This would restrict the use of the function to an array of a specific size and reduce the func-
tion’s reusability. Only programs processing single-subscripted int arrays of the specific
size “hard coded” into the function could use the function.

Software Engineering Observation 5.6
When passing an array to a function, also pass the size of the array (rather than building into
the function knowledge of the array size). This helps make the function more general. Gen-
eral functions are often reusable in many programs. 5.6

C++ provides the unary operator sizeof to determine the size of an array (or of any
other data type, variable or constant) in bytes during program compilation. When applied to
the name of an array, as in Fig. 5.16 (line 16), the sizeof operator returns the total number
of bytes in the array as a value of type size_t (which is usually unsigned int). The
computer we used to compile this program stores variables of type double in 8 bytes of
memory, and array is declared to have 20 elements, so array uses 160 bytes in memory.

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Fig. 5.15 Bubble sort with pass-by-reference. (Part 3 of 3.)

Chapter 5 Pointers and Strings 339

When applied to a pointer parameter (line 28) in a function that receives an array as an argu-
ment, the sizeof operator returns the size of the pointer in bytes (4), not the size of the array.

Common Programming Error 5.7
Using the sizeof operator in a function to find the size in bytes of an array parameter re-
sults in the size in bytes of a pointer, not the size in bytes of the array. 5.7

The number of elements in an array also can be determined using the results of two
sizeof operations. For example, consider the following array declaration:

double realArray[22];

If variables of data type double are stored in eight bytes of memory, array realArray
contains a total of 176 bytes. To determine the number of elements in the array, the follow-
ing expression can be used:

sizeof realArray / sizeof(double)

1 // Fig. 5.16: fig05_16.cpp
2 // Sizeof operator when used on an array name
3 // returns the number of bytes in the array.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 size_t getSize(); // prototype

10
11 int main()
12 {
13
14
15 cout <<
16 <<
17
18 cout <<
19 <<
20
21 return 0; // indicates successful termination
22
23 } // end main
24
25
26 size_t getSize()
27 {
28
29
30 } // end function getSize

The number of bytes in the array is 160
The number of bytes returned by getSize is 4

Fig. 5.16 sizeof operator when applied to an array name returns the number of
bytes in the array.

double *

double array[20];

"The number of bytes in the array is "
sizeof(array);

"\nThe number of bytes returned by getSize is "
getSize(array) << endl;

// return size of ptr
double *ptr

return sizeof(ptr);

340 Pointers and Strings Chapter 5

The expression determines the number of bytes in array realArray and divides that val-
ue by the number of bytes used in memory to store a double value; the result is the num-
ber of elements in realArray.

The program of Fig. 5.17 uses the sizeof operator to calculate the number of bytes
used to store each of the standard data types.

Portability Tip 5.3
The number of bytes used to store a particular data type may vary between systems. When
writing programs that depend on data type sizes, and that will run on several computer sys-
tems, use sizeof to determine the number of bytes used to store the data types. 5.3

1 // Fig. 5.17: fig05_17.cpp
2 // Demonstrating the sizeof operator.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 int main()
9 {

10 char c;
11 short s;
12 int i;
13 long l;
14 float f;
15 double d;
16 long double ld;
17 int array[20];
18 int *ptr = array;
19
20 cout << "sizeof c = " <<
21 << "\tsizeof(char) = " <<
22 << "\nsizeof s = " <<
23 << "\tsizeof(short) = " <<
24 << "\nsizeof i = " <<
25 << "\tsizeof(int) = " <<
26 << "\nsizeof l = " <<
27 << "\tsizeof(long) = " <<
28 << "\nsizeof f = " <<
29 << "\tsizeof(float) = " <<
30 << "\nsizeof d = " <<
31 << "\tsizeof(double) = " <<
32 << "\nsizeof ld = " <<
33 << "\tsizeof(long double) = " <<
34 << "\nsizeof array = " <<
35 << "\nsizeof ptr = " <<
36 << endl;
37
38 return 0; // indicates successful termination
39
40 } // end main

Fig. 5.17 sizeof operator used to determine standard data type sizes. (Part 1 of 2.)

sizeof c
sizeof(char)

sizeof s
sizeof(short)

sizeof i
sizeof(int)

sizeof l
sizeof(long)

sizeof f
sizeof(float)

sizeof d
sizeof(double)

sizeof ld
sizeof(long double)

sizeof array
sizeof ptr

Chapter 5 Pointers and Strings 341

Operator sizeof can be applied to any variable name, type name or constant value.
When sizeof is applied to a variable name (which is not an array name) or a constant
value, the number of bytes used to store the specific type of variable or constant is returned.
Note that the parentheses used with sizeof are required only if a type name is supplied
as its operand. The parentheses used with sizeof are not required when sizeof’s
operand is a variable name or constant. Remember that sizeof is an operator, not a func-
tion, and that it has its effect at compile time, not execution time.

Common Programming Error 5.8
Omitting the parentheses in a sizeof operation when the operand is a type name is a syntax
error. 5.8

Performance Tip 5.2
Because sizeof is a compile-time unary operator, not an execution-time operator, using
sizeof does not negatively impact execution performance. 5.2

Testing and Debugging Tip 5.2
To avoid errors associated with omitting the parentheses around the operand of operator
sizeof, many programmers include parentheses around every sizeof operand. 5.2

5.7 Pointer Expressions and Pointer Arithmetic
Pointers are valid operands in arithmetic expressions, assignment expressions and compar-
ison expressions. However, not all the operators normally used in these expressions are val-
id with pointer variables. This section describes the operators that can have pointers as
operands and how these operators are used with pointers.

Several arithmetic operations may be performed on pointers. A pointer may be incre-
mented (++) or decremented (--), an integer may be added to a pointer (+ or +=), an integer
may be subtracted from a pointer (- or -=) or one pointer may be subtracted from another.

Assume that array int v[5] has been declared and that its first element is at location
3000 in memory. Assume that pointer vPtr has been initialized to point to v[0] (i.e.,
that the value of vPtr is 3000). Figure 5.18 diagrams this situation for a machine with
four-byte integers. Note that vPtr can be initialized to point to array v with either of the
following statements:

vPtr = v;
vPtr = &v[0];

sizeof c = 1 sizeof(char) = 1
sizeof s = 2 sizeof(short) = 2
sizeof i = 4 sizeof(int) = 4
sizeof l = 4 sizeof(long) = 4
sizeof f = 4 sizeof(float) = 4
sizeof d = 8 sizeof(double) = 8
sizeof ld = 8 sizeof(long double) = 8
sizeof array = 80
sizeof ptr = 4

Fig. 5.17 sizeof operator used to determine standard data type sizes. (Part 2 of 2.)

342 Pointers and Strings Chapter 5

Portability Tip 5.4
Most computers today have two-byte or four-byte integers. Some of the newer machines use
eight-byte integers. Because the results of pointer arithmetic depend on the size of the objects
a pointer points to, pointer arithmetic is machine dependent. 5.4

In conventional arithmetic, the addition 3000 + 2 yields the value 3002. This is nor-
mally not the case with pointer arithmetic. When an integer is added to, or subtracted from,
a pointer, the pointer is not simply incremented or decremented by that integer, but by that
integer times the size of the object to which the pointer refers. The number of bytes depends
on the object’s data type. For example, the statement

vPtr += 2;

would produce 3008 (3000 + 2 * 4), assuming that an int is stored in four bytes of
memory. In the array v, vPtr would now point to v[2] (Fig. 5.19). If an integer is stored
in two bytes of memory, then the preceding calculation would result in memory location
3004 (3000 + 2 * 2). If the array were of a different data type, the preceding statement
would increment the pointer by twice the number of bytes it takes to store an object of that
data type. When performing pointer arithmetic on a character array, the results will be
consistent with regular arithmetic, because each character is one byte long.

Fig. 5.18 Array v and a pointer variable vPtr that points to v.

pointer variable vPtr

v[0] v[1] v[2] v[4]v[3]

3000 3004 3008 3012 3016
location

Fig. 5.19 Pointer vPtr after pointer arithmetic.

pointer variable vPtr

v[0] v[1] v[2] v[4]v[3]

3000 3004 3008 3012 3016
location

Chapter 5 Pointers and Strings 343

If vPtr had been incremented to 3016, which points to v[4], the statement

vPtr -= 4;

would set vPtr back to 3000—the beginning of the array. If a pointer is being incre-
mented or decremented by one, the increment (++) and decrement (--) operators can be
used. Each of the statements

++vPtr;
vPtr++;

increments the pointer to point to the next element of the array. Each of the statements

--vPtr;
vPtr--;

decrements the pointer to point to the previous element of the array.
Pointer variables pointing to the same array may be subtracted from one another. For

example, if vPtr contains the location 3000 and v2Ptr contains the address 3008, the
statement

x = v2Ptr - vPtr;

would assign to x the number of array elements from vPtr to v2Ptr, in this case, 2.
Pointer arithmetic is meaningless unless performed on a pointer that points to an array. We
cannot assume that two variables of the same type are stored contiguously in memory un-
less they are adjacent elements of an array.

Common Programming Error 5.9
Using pointer arithmetic on a pointer that does not refer to an array of values is a logic error.5.9

Common Programming Error 5.10
Subtracting or comparing two pointers that do not refer to elements of the same array is a
logic error. 5.10

Common Programming Error 5.11
Using pointer arithmetic to increment or decrement a pointer such that the pointer refers to
an element past the end of the array or before the beginning of the array is normally a logic
error. 5.11

A pointer can be assigned to another pointer if both pointers are of the same type. Oth-
erwise, a cast operator must be used to convert the value of the pointer on the right of the
assignment to the pointer type on the left of the assignment. The exception to this rule is
the pointer to void (i.e., void *), which is a generic pointer capable of representing any
pointer type. All pointer types can be assigned to a pointer of type void * without casting.
However, a pointer of type void * cannot be assigned directly to a pointer of another
type—the pointer of type void * must first be cast to the proper pointer type.

A void * pointer cannot be dereferenced. For example, the compiler “knows” that a
pointer to int refers to four bytes of memory on a machine with four-byte integers, but a
pointer to void simply contains a memory address for an unknown data type—the precise
number of bytes to which the pointer refers is not known by the compiler. The compiler must

344 Pointers and Strings Chapter 5

know the data type to determine the number of bytes to be dereferenced for a particular
pointer. For a pointer to void, this number of bytes cannot be determined from the type.

Common Programming Error 5.12
Assigning a pointer of one type to a pointer of another (other than void *) without casting
the first pointer to the type of the second pointer is a syntax error. 5.12

Common Programming Error 5.13
All operations on a void * pointer are syntax errors, except comparing void * pointers
with other pointers, casting void * pointers to valid pointer types and assigning addresses
to void * pointers. 5.13

Pointers can be compared using equality and relational operators. Comparisons using
relational operators are meaningless unless the pointers point to members of the same array.
Pointer comparisons compare the addresses stored in the pointers. A comparison of two
pointers pointing to the same array could show, for example, that one pointer points to a
higher numbered element of the array than the other pointer does. A common use of pointer
comparison is determining whether a pointer is 0 (i.e., the pointer does not point to anything).

5.8 Relationship Between Pointers and Arrays
Arrays and pointers are intimately related in C++ and may be used almost interchangeably.
An array name can be thought of as a constant pointer. Pointers can be used to do any op-
eration involving array subscripting.

Assume the following declarations:

int b[5];
int *bPtr;

Because the array name (without a subscript) is a pointer to the first element of the array,
we can set bPtr to the address of the first element in array b with the statement

bPtr = b;

This is equivalent to taking the address of the first element of the array as follows:

bPtr = &b[0];

Array element b[3] can alternatively be referenced with the pointer expression

*(bPtr + 3)

The 3 in the preceding expression is the offset to the pointer. When the pointer points to the
beginning of an array, the offset indicates which element of the array should be referenced,
and the offset value is identical to the array subscript. The preceding notation is referred to
as pointer/offset notation. The parentheses are necessary, because the precedence of * is
higher than the precedence of +. Without the parentheses, the above expression would add
3 to the value of the expression *bPtr (i.e., 3 would be added to b[0], assuming that
bPtr points to the beginning of the array). Just as the array element can be referenced with
a pointer expression, the address

&b[3]

Chapter 5 Pointers and Strings 345

can be written with the pointer expression

bPtr + 3

The array name can be treated as a pointer and used in pointer arithmetic. For example,
the expression

*(b + 3)

also refers to the array element b[3]. In general, all subscripted array expressions can be
written with a pointer and an offset. In this case, pointer/offset notation was used with the
name of the array as a pointer. Note that the preceding expression does not modify the array
name in any way; b still points to the first element in the array.

Pointers can be subscripted exactly as arrays can. For example, the expression

bPtr[1]

refers to the array element b[1]; this expression uses pointer/subscript notation.
Remember that an array name is essentially a constant pointer; it always points to the

beginning of the array. Thus, the expression

b += 3

is invalid, because it attempts to modify the value of the array name with pointer arithmetic.

Common Programming Error 5.14
Although array names are pointers to the beginning of the array and pointers can be modi-
fied in arithmetic expressions, array names cannot be modified in arithmetic expressions, be-
cause array names are constant pointers. 5.14

Good Programming Practice 5.3
For clarity, use array notation instead of pointer notation when manipulating arrays. 5.3

Figure 5.20 uses the four notations discussed in this section for referring to array ele-
ments—array subscript notation, pointer/offset notation with the array name as a pointer,
pointer subscript notation and pointer/offset notation with a pointer—to print the four ele-
ments of the integer array b.

1 // Fig. 5.20: fig05_20.cpp
2 // Using subscripting and pointer notations with arrays.
3
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 int main()

10 {

Fig. 5.20 Referencing array elements with the array name and with pointers. (Part 1
of 3.)

346 Pointers and Strings Chapter 5

11 int b[] = { 10, 20, 30, 40 };
12 int *bPtr = b; // set bPtr to point to array b
13
14 // output array b using array subscript notation
15 cout << "Array b printed with:\n"
16 << "Array subscript notation\n";
17
18 for (int i = 0; i < 4; i++)
19 cout << "b[" << i << "] = " << << '\n';
20
21 // output array b using the array name and
22 // pointer/offset notation
23 cout << "\nPointer/offset notation where "
24 << "the pointer is the array name\n";
25
26 for (int offset1 = 0; offset1 < 4; offset1++)
27 cout << "*(b + " << offset1 << ") = "
28 << << '\n';
29
30 // output array b using bPtr and array subscript notation
31 cout << "\nPointer subscript notation\n";
32
33 for (int j = 0; j < 4; j++)
34 cout << "bPtr[" << j << "] = " << << '\n';
35
36 cout << "\nPointer/offset notation\n";
37
38 // output array b using bPtr and pointer/offset notation
39 for (int offset2 = 0; offset2 < 4; offset2++)
40 cout << "*(bPtr + " << offset2 << ") = "
41 << << '\n';
42
43 return 0; // indicates successful termination
44
45 } // end main

Array b printed with:

Array subscript notation
b[0] = 10
b[1] = 20
b[2] = 30
b[3] = 40

Pointer/offset notation where the pointer is the array name
*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40

(Continued on top of next page)

Fig. 5.20 Referencing array elements with the array name and with pointers. (Part 2
of 3.)

b[i]

*(b + offset1)

bPtr[j]

*(bPtr + offset2)

Chapter 5 Pointers and Strings 347

To further illustrate the interchangeability of arrays and pointers, let us look at the two
string copying functions—copy1 and copy2—in the program of Fig. 5.21. Both func-
tions copy a string into a character array. After a comparison of the function prototypes for
copy1 and copy2, the functions appear identical (because of the interchangeability of
arrays and pointers). These functions accomplish the same task, but they are implemented
differently.

(Continued from previous page)
Pointer subscript notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10
*(bPtr + 1) = 20
*(bPtr + 2) = 30
*(bPtr + 3) = 40

1 // Fig. 5.21: fig05_21.cpp
2 // Copying a string using array notation
3 // and pointer notation.
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 void copy1(char *, const char *); // prototype

10 void copy2(char *, const char *); // prototype
11
12 int main()
13 {
14 char string1[10];
15 char *string2 = "Hello";
16 char string3[10];
17 char string4[] = "Good Bye";
18
19 copy1(string1, string2);
20 cout << "string1 = " << string1 << endl;
21
22 copy2(string3, string4);
23 cout << "string3 = " << string3 << endl;
24
25 return 0; // indicates successful termination
26
27 } // end main

Fig. 5.21 String copying using array notation and pointer notation. (Part 1 of 2.)

Fig. 5.20 Referencing array elements with the array name and with pointers. (Part 3
of 3.)

348 Pointers and Strings Chapter 5

Function copy1 (lines 30–35) uses array subscript notation to copy the string in s2
to the character array s1. The function declares an integer counter variable i to use as the
array subscript. The for structure header (line 32) performs the entire copy operation—its
body is the empty statement. The header specifies that i is initialized to zero and incre-
mented by one on each iteration of the loop. The condition in the for, (s1[i] =
s2[i]) != '\0', performs the copy operation character by character from s2 to s1.
When the null character is encountered in s2, it is assigned to s1, and the loop terminates,
because the null character is equal to '\0'. Remember that the value of an assignment
statement is the value assigned to its left operand.

Function copy2 (lines 38–43) uses pointers and pointer arithmetic to copy the string
in s2 to the character array s1. Again, the for structure header (line 40) performs the
entire copy operation. The header does not include any variable initialization. As in func-
tion copy1, the condition (*s1 = *s2) != '\0' performs the copy operation. Pointer
s2 is dereferenced, and the resulting character is assigned to the dereferenced pointer s1.
After the assignment in the condition, the loop increments both pointers, so they point to
the next element of array s1 and the next character of string s2, respectively. When the
loop encounters the null character in s2, the null character is assigned to the dereferenced
pointer s1 and the loop terminates. Note that the “increment portion” of this for structure
has two increment expressions separated by a comma operator.

The first argument to both copy1 and copy2 must be an array large enough to hold
the string in the second argument. Otherwise, an error may occur when an attempt is made
to write into a memory location beyond the bounds of the array. Also, note that the second
parameter of each function is declared as const char * (a pointer to a character con-
stant—i.e., a constant string). In both functions, the second argument is copied into the first
argument—characters are copied from the second argument one at a time, but the charac-
ters are never modified. Therefore, the second parameter is declared to point to a constant

28
29
30 void copy1()
31 {
32
33
34
35 } // end function copy1
36
37
38 void copy2()
39 {
40
41
42
43 } // end function copy2

string1 = Hello
string3 = Good Bye

Fig. 5.21 String copying using array notation and pointer notation. (Part 2 of 2.)

// copy s2 to s1 using array notation
char *s1, const char *s2

for (int i = 0; (s1[i] = s2[i]) != '\0'; i++)
 ; // do nothing in body

// copy s2 to s1 using pointer notation
char *s1, const char *s2

for (; (*s1 = *s2) != '\0'; s1++, s2++)
 ; // do nothing in body

Chapter 5 Pointers and Strings 349

value to enforce the principle of least privilege—neither function needs to modify the
second argument, so neither function is allowed to modify the second argument.

5.9 Arrays of Pointers
Arrays may contain pointers. A common use of such a data structure is to form an array of
strings, referred to simply as a string array. Each entry in the array is a string, but in C++
a string is essentially a pointer to its first character, so each entry in an array of strings is
actually a pointer to the first character of a string. Consider the declaration of string array
suit that might be useful in representing a deck of cards:

const char *suit[4] =
 { "Hearts", "Diamonds", "Clubs", "Spades" };

The suit[4] portion of the declaration indicates an array of four elements. The char *
portion of the declaration indicates that each element of array suit is of type “pointer to
char.” The four values to be placed in the array are "Hearts", "Diamonds",
"Clubs" and "Spades". Each of these is stored in memory as a null-terminated charac-
ter string that is one character longer than the number of characters between quotes. The
four strings are seven, nine, six and seven characters long, respectively. Although it appears
as though these strings are being placed in the suit array, only pointers are actually stored
in the array, as shown in Fig. 5.22. Each pointer points to the first character of its corre-
sponding string. Thus, even though the suit array is fixed in size, it provides access to
character strings of any length. This flexibility is one example of C++’s powerful data
structuring capabilities.

The suit strings could be placed into a double-subscripted array in which each row rep-
resents one suit and each column represents one of the letters of a suit name. Such a data
structure must have a fixed number of columns per row, and that number must be as large
as the largest string. Therefore, considerable memory is wasted when a large number of
strings is stored with most strings shorter than the longest string. We use arrays of strings
to help represent a deck of cards in the next section.

String arrays are commonly used with command-line arguments that are passed to
function main when a program begins execution. Such arguments follow the program
name when a program is executed from the command line. A typical use of command-line

Fig. 5.22 Graphical representation of the suit array.

suit[0]

suit[3]

suit[1]

suit[2]

'H' 'e' 'a' 'r' 't' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'S' 'p' 'a' 'd' 'e' 's' '\0'

350 Pointers and Strings Chapter 5

arguments is to pass options to a program. For example, from the command line on a Win-
dows computer, the user can type

dir /P

to list the contents of the current directory and pause after each screen of information. When
the dir command executes, the option /P is passed to dir as a command-line argument.
Such arguments are placed in a string array that main receives as an argument. We discuss
command-line arguments in Section 20.4.

5.10 Case Study: Card Shuffling and Dealing Simulation
This section uses random-number generation to develop a card shuffling and dealing simula-
tion program. This program can then be used to implement programs that play specific card
games. To reveal some subtle performance problems, we have intentionally used suboptimal
shuffling and dealing algorithms. In the exercises, we develop more efficient algorithms.

Using the top-down, stepwise-refinement approach, we develop a program that will
shuffle a deck of 52 playing cards and then deal each of the 52 cards. The top-down
approach is particularly useful in attacking larger, more complex problems than we have
seen in the early chapters.

We use a 4-by-13 double-subscripted array deck to represent the deck of playing
cards (Fig. 5.23). The rows correspond to the suits—row 0 corresponds to hearts, row 1 to
diamonds, row 2 to clubs and row 3 to spades. The columns correspond to the face values
of the cards—columns 0 through 9 correspond to faces ace through 10, respectively, and
columns 10 through 12 correspond to jack, queen and king, respectively. We shall load
string array suit with character strings representing the four suits and string array face
with character strings representing the 13 face values.

This simulated deck of cards may be shuffled as follows. First the array deck is ini-
tialized to zeros. Then, a row (0–3) and a column (0–12) are each chosen at random. The
number 1 is inserted in array element deck[row][column] to indicate that this card
is going to be the first one dealt from the shuffled deck. This process continues with the
numbers 2, 3, …, 52 being randomly inserted in the deck array to indicate which cards are

Fig. 5.23 Double-subscripted array representation of a deck of cards.

Hearts

Diamonds

Clubs

Spades

0
1
2
3

A
c

e

Tw
o

Th
re

e

Fo
u

r

Fi
ve

Si
x

Se
ve

n

Ei
g

h
t

N
in

e

Te
n

Ja
c

k

Q
u

e
e

n

K
in

g

0 1 2 3 4 5 6 7 8 9 10 11 12

deck[2][12] represents the King of Clubs

Clubs King

Chapter 5 Pointers and Strings 351

to be placed second, third, …, and 52nd in the shuffled deck. As the deck array begins to
fill with card numbers, it is possible that a card will be selected twice (i.e.,
deck[row][column] will be nonzero when it is selected). This selection is simply
ignored, and other rows and columns are repeatedly chosen at random until an unselected
card is found. Eventually, the numbers 1 through 52 will occupy the 52 slots of the deck
array. At this point, the deck of cards is fully shuffled.

This shuffling algorithm could execute for an indefinitely long period if cards that have
already been shuffled are repeatedly selected at random. This phenomenon is known as
indefinite postponement. In the exercises, we discuss a better shuffling algorithm that elim-
inates the possibility of indefinite postponement.

Performance Tip 5.3
Sometimes algorithms that emerge in a “natural” way can contain subtle performance prob-
lems such as indefinite postponement. Seek algorithms that avoid indefinite postponement. 5.3

To deal the first card, we search the array for deck[row][column] matching 1.
This is accomplished with a nested for structure that varies row from 0 to 3 and column
from 0 to 12. What card does that slot of the array correspond to? The suit array has been
preloaded with the four suits, so to get the suit, we print the character string suit[row].
Similarly, to get the face value of the card, we print the character string face[column].
We also print the character string " of ". Printing this information in the proper order enables
us to print each card in the form "King of Clubs", "Ace of Diamonds" and so on.

Let us proceed with the top-down, stepwise-refinement process. The top is simply

Shuffle and deal 52 cards

Our first refinement yields

Initialize the suit array
Initialize the face array
Initialize the deck array
Shuffle the deck
Deal 52 cards

“Shuffle the deck” may be expanded as follows:

For each of the 52 cards
Place card number in randomly selected unoccupied slot of deck

“Deal 52 cards” may be expanded as follows:

For each of the 52 cards
Find card number in deck array and print face and suit of card

Incorporating these expansions yields our complete second refinement:

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Place card number in randomly selected unoccupied slot of deck

For each of the 52 cards
Find card number in deck array and print face and suit of card

352 Pointers and Strings Chapter 5

“Place card number in randomly selected unoccupied slot of deck” may be expanded
as follows:

Choose slot of deck randomly

While chosen slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

“Find card number in deck array and print face and suit of card” may be expanded as follows:

For each slot of the deck array
If slot contains card number

Print the face and suit of the card

Incorporating these expansions yields our third refinement:

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Choose slot of deck randomly

While slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

For each of the 52 cards
For each slot of deck array

If slot contains desired card number
Print the face and suit of the card

This completes the refinement process. Figure 5.24 contains the card shuffling and
dealing program and a sample execution. Note the output formatting (lines 81–84) used in
function deal. The output statement causes the face to be output right justified in a field of
five characters and the suit to be output left justified in a field of eight characters. The output
is printed in two-column format—if the card being output is in the first column (line 84), a
tab is output after the card to move to the second column; otherwise, a newline is output.

1 // Fig. 5.24: fig05_24.cpp
2 // Card shuffling dealing program.
3 #include <iostream>
4
5 using std::cout;
6 using std::left;
7 using std::right;
8
9 #include <iomanip>

10
11 using std::setw;
12

Fig. 5.24 Card shuffling and dealing program. (Part 1 of 3.)

Chapter 5 Pointers and Strings 353

13 #include <cstdlib> // prototypes for rand and srand
14 #include <ctime> // prototype for time
15
16 // prototypes
17 void shuffle(int [][13]);
18 void deal(const int [][13], const char *[], const char *[]);
19
20 int main()
21 {
22
23
24
25
26
27
28
29
30
31
32 // initialize deck array
33 int deck[4][13] = { 0 };
34
35 srand(time(0)); // seed random-number generator
36
37 shuffle(deck);
38 deal(deck, face, suit);
39
40 return 0; // indicates successful termination
41
42 } // end main
43
44 // shuffle cards in deck
45 void shuffle(int wDeck[][13])
46 {
47 int row;
48 int column;
49
50 // for each of the 52 cards, choose slot of deck randomly
51 for (int card = 1; card <= 52; card++) {
52
53
54
55
56
57
58
59 // place card number in chosen slot of deck
60 wDeck[row][column] = card;
61
62 } // end for
63
64 } // end function shuffle

Fig. 5.24 Card shuffling and dealing program. (Part 2 of 3.)

// initialize suit array
const char *suit[4] =
 { "Hearts", "Diamonds", "Clubs", "Spades" };

// initialize face array
const char *face[13] =
 { "Ace", "Deuce", "Three", "Four",

"Five", "Six", "Seven", "Eight",
"Nine", "Ten", "Jack", "Queen", "King" };

// choose new random location until unoccupied slot found
do {
 row = rand() % 4;
 column = rand() % 13;
} while (wDeck[row][column] != 0); // end do/while

354 Pointers and Strings Chapter 5

65
66 // deal cards in deck
67 void deal(const int wDeck[][13], const char *wFace[],
68 const char *wSuit[])
69 {
70 // for each of the 52 cards
71 for (int card = 1; card <= 52; card++)
72
73 // loop through rows of wDeck
74 for (int row = 0; row <= 3; row++)
75
76 // loop through columns of wDeck for current row
77 for (int column = 0; column <= 12; column++)
78
79 // if slot contains current card, display card
80 if (wDeck[row][column] == card) {
81
82
83
84
85
86 } // end if
87
88 } // end function deal

 Nine of Spades Seven of Clubs
 Five of Spades Eight of Clubs
Queen of Diamonds Three of Hearts
 Jack of Spades Five of Diamonds
 Jack of Diamonds Three of Diamonds
Three of Clubs Six of Clubs
 Ten of Clubs Nine of Diamonds
 Ace of Hearts Queen of Hearts
Seven of Spades Deuce of Spades
 Six of Hearts Deuce of Clubs
 Ace of Clubs Deuce of Diamonds
 Nine of Hearts Seven of Diamonds
 Six of Spades Eight of Diamonds
 Ten of Spades King of Hearts
 Four of Clubs Ace of Spades
 Ten of Hearts Four of Spades
Eight of Hearts Eight of Spades
 Jack of Hearts Ten of Diamonds
 Four of Diamonds King of Diamonds
Seven of Hearts King of Spades
Queen of Spades Four of Hearts
 Nine of Clubs Six of Diamonds
Deuce of Hearts Jack of Clubs
 King of Clubs Three of Spades
Queen of Clubs Five of Clubs
 Five of Hearts Ace of Diamonds

Fig. 5.24 Card shuffling and dealing program. (Part 3 of 3.)

cout << setw(5) << right << wFace[column]
 << " of " << setw(8) << left
 << wSuit[row]
 << (card % 2 == 0 ? '\n' : '\t');

Chapter 5 Pointers and Strings 355

There is also a weakness in the dealing algorithm. Once a match is found, even if it is
found on the first try, the two inner for structures continue searching the remaining ele-
ments of deck for a match. In the exercises, we correct this deficiency.

5.11 Function Pointers
A pointer to a function contains the address of the function in memory. In Chapter 4, we
saw that an array name is really the address in memory of the first element of the array. Sim-
ilarly, a function name is really the starting address in memory of the code that performs
the function’s task. Pointers to functions can be passed to functions, returned from func-
tions, stored in arrays and assigned to other function pointers.

Multipurpose Bubble Sort Using Function Pointers
To illustrate the use of pointers to functions, Fig. 5.25 modifies the bubble sort program of
Fig. 5.15. Figure 5.25 consists of main (lines 19–57) and the functions bubble (lines
61–74), swap (lines 78–84), ascending (lines 88–92) and descending (lines 96–
100). Function bubble receives a pointer to a function—either function ascending or
function descending—as an argument in addition to an integer array and the size of the
array. Functions ascending and descending determine the sorting order. The pro-
gram prompts the user to choose whether the array should be sorted in ascending order or
in descending order. If the user enters 1, a pointer to function ascending is passed to
function bubble (line 38), causing the array to be sorted into increasing order. If the user
enters 2, a pointer to function descending is passed to function bubble (line 45), caus-
ing the array to be sorted into decreasing order.

1 // Fig. 5.25: fig05_25.cpp
2 // Multipurpose sorting program using function pointers.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 #include <iomanip>

10
11 using std::setw;
12
13 // prototypes
14 void bubble(int [], const int,);
15 void swap(int * const, int * const);
16 bool ascending(int, int);
17 bool descending(int, int);
18
19 int main()
20 {
21 const int arraySize = 10;
22 int order;
23 int counter;
24 int a[arraySize] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };

Fig. 5.25 Multipurpose sorting program using function pointers. (Part 1 of 3.)

bool (*)(int, int)

356 Pointers and Strings Chapter 5

25
26 cout << "Enter 1 to sort in ascending order,\n"
27 << "Enter 2 to sort in descending order: ";
28 cin >> order;
29 cout << "\nData items in original order\n";
30
31 // output original array
32 for (counter = 0; counter < arraySize; counter++)
33 cout << setw(4) << a[counter];
34
35 // sort array in ascending order; pass function ascending
36 // as an argument to specify ascending sorting order
37 if (order == 1) {
38
39 cout << "\nData items in ascending order\n";
40 }
41
42 // sort array in descending order; pass function descending
43 // as an agrument to specify descending sorting order
44 else {
45
46 cout << "\nData items in descending order\n";
47 }
48
49 // output sorted array
50 for (counter = 0; counter < arraySize; counter++)
51 cout << setw(4) << a[counter];
52
53 cout << endl;
54
55 return 0; // indicates successful termination
56
57 } // end main
58
59 // multipurpose bubble sort; parameter compare is a pointer to
60 // the comparison function that determines sorting order
61 void bubble(int work[], const int size,
62)
63 {
64 // loop to control passes
65 for (int pass = 1; pass < size; pass++)
66
67 // loop to control number of comparisons per pass
68 for (int count = 0; count < size - 1; count++)
69
70 // if adjacent elements are out of order, swap them
71 if ()
72 swap(&work[count], &work[count + 1]);
73
74 } // end function bubble
75

Fig. 5.25 Multipurpose sorting program using function pointers. (Part 2 of 3.)

bubble(a, arraySize, ascending);

bubble(a, arraySize, descending);

bool (*compare)(int, int)

(*compare)(work[count], work[count + 1])

Chapter 5 Pointers and Strings 357

The following parameter appears in the function header for bubble:

bool (*compare)(int, int)

This tells bubble to expect a parameter that is a pointer to a function that receives two
integer parameters and returns a bool result. Parentheses are needed around *compare
to indicate that compare is a pointer to a function. If we had not included the parentheses,
the declaration would have been

76 // swap values at memory locations to which
77 // element1Ptr and element2Ptr point
78 void swap(int * const element1Ptr, int * const element2Ptr)
79 {
80 int hold = *element1Ptr;
81 *element1Ptr = *element2Ptr;
82 *element2Ptr = hold;
83
84 } // end function swap
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in descending order
 89 68 45 37 12 10 8 6 4 2

Fig. 5.25 Multipurpose sorting program using function pointers. (Part 3 of 3.)

// determine whether elements are out of order
// for an ascending order sort
bool ascending(int a, int b)
{

return b < a; // swap if b is less than a

} // end function ascending

// determine whether elements are out of order
// for a descending order sort
bool descending(int a, int b)
{

return b > a; // swap if b is greater than a

} // end function descending

358 Pointers and Strings Chapter 5

bool *compare(int, int)

which declares a function that receives two integers as parameters and returns a pointer to
a bool value.

The corresponding parameter in the function prototype of bubble is

bool (*)(int, int)

Note that only types have been included. However, for documentation purposes, the pro-
grammer can include names that the compiler will ignore.

The function passed to bubble is called in line 71 as follows:

(*compare)(work[count], work[count + 1])

Just as a pointer to a variable is dereferenced to access the value of the variable, a pointer
to a function is dereferenced to execute the function.

The call to the function could have been made without dereferencing the pointer, as in

compare(work[count], work[count + 1])

which uses the pointer directly as the function name. We prefer the first method of calling
a function through a pointer, because it explicitly illustrates that compare is a pointer to
a function that is dereferenced to call the function. The second method of calling a function
through a pointer makes it appear as though compare is the name of an actual function in
the program. This may be confusing to a user of the program who would like to see the def-
inition of function compare and finds that it is never defined in the file.

Arrays of Pointers to Functions
One use of function pointers is in menu-driven systems. The program prompts a user to se-
lect an option (e.g., from 1 to 5) from a menu. Each option is serviced by a different func-
tion. Pointers to each function are stored in an array of pointers to functions. In this case,
all the functions to which the array points must have the same return type and same param-
eter types. The user’s choice is used as a subscript into the array of function pointers, and
the pointer in the array is used to call the function.

Figure 5.26 provides a generic example of the mechanics of declaring and using an array
of pointers to functions. Three functions are defined—function1, function2 and
function3—that each take an integer argument and do not return a value. Line 18 stores
pointers to these three functions in array f. The declaration is read beginning in the leftmost
set of parentheses as, “f is an array of three pointers to functions that each take an int as an
argument and return void.” The array is initialized with the names of the three functions
(which, again, are pointers). When the user enters a value between 0 and 2, the value is used
as the subscript into the array of pointers to functions. Line 30 invokes one of the functions
in array f. In the call, f[choice] selects the pointer at location choice in the array. The
pointer is dereferenced to call the function, and choice is passed as the argument to the
function. Each function prints its argument’s value and its function name to indicate that the
function is called correctly. In the exercises, you will develop a menu-driven system.

1 // Fig. 5.26: fig05_26.cpp
2 // Demonstrating an array of pointers to functions.

Fig. 5.26 Array of pointers to functions. (Part 1 of 3.)

Chapter 5 Pointers and Strings 359

3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 // function prototypes

10
11
12
13
14 int main()
15 {
16
17
18
19
20 int choice;
21
22 cout << "Enter a number between 0 and 2, 3 to end: ";
23 cin >> choice;
24
25 // process user's choice
26 while (choice >= 0 && choice < 3) {
27
28
29
30
31
32 cout << "Enter a number between 0 and 2, 3 to end: ";
33 cin >> choice;
34 }
35
36 cout << "Program execution completed." << endl;
37
38 return 0; // indicates successful termination
39
40 } // end main
41
42
43 {
44 cout << "You entered " << a
45 << " so function1 was called\n\n";
46
47 } // end function1
48
49
50 {
51 cout << "You entered " << b
52 << " so function2 was called\n\n";
53
54 } // end function2
55

Fig. 5.26 Array of pointers to functions. (Part 2 of 3.)

void function1(int);
void function2(int);
void function3(int);

// initialize array of 3 pointers to functions that each
// take an int argument and return void
void (*f[3])(int) = { function1, function2, function3 };

// invoke function at location choice in array f
// and pass choice as an argument
(*f[choice])(choice);

void function1(int a)

void function2(int b)

360 Pointers and Strings Chapter 5

5.12 Introduction to Character and String Processing
In this section, we introduce some common standard library functions that facilitate string
processing. The techniques discussed here are appropriate for developing text editors, word
processors, page layout software, computerized typesetting systems and other kinds of text-
processing software. We use pointer-based strings here. Chapter 8 introduces strings as
full-fledged objects, and Chapter 15 explains strings as full-fledged objects in detail.

5.12.1 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of C++ source programs. Every program is
composed of a sequence of characters that—when grouped together meaningfully—is in-
terpreted by the compiler as a series of instructions used to accomplish a task. A program
may contain character constants. A character constant is an integer value represented as a
character in single quotes. The value of a character constant is the integer value of the char-
acter in the machine’s character set. For example, 'z' represents the integer value of z
(122 in the ASCII character set; see Appendix B), and '\n' represents the integer value
of newline (10 in the ASCII character set).

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters such as +, -, *, /and $. String literals, or string con-
stants, in C++ are written in double quotation marks as follows:

"John Q. Doe" (a name)
"9999 Main Street" (a street address)
"Maynard, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

A string in C++ is an array of characters ending in the null character ('\0'), which
specifies where the string terminates in memory. A string is accessed via a pointer to the
first character in the string. The value of a string is the (constant) address of its first char-

56
57 {
58 cout << "You entered " << c
59 << " so function3 was called\n\n";
60
61 } // end function3

Enter a number between 0 and 2, 3 to end: 0
You entered 0 so function1 was called

Enter a number between 0 and 2, 3 to end: 1
You entered 1 so function2 was called

Enter a number between 0 and 2, 3 to end: 2
You entered 2 so function3 was called

Enter a number between 0 and 2, 3 to end: 3
Program execution completed.

Fig. 5.26 Array of pointers to functions. (Part 3 of 3.)

void function3(int c)

Chapter 5 Pointers and Strings 361

acter. Thus, in C++, it is appropriate to say that a string is a constant pointer—in fact, a
pointer to the string’s first character. In this sense, strings are like arrays, because an array
name is also a (constant) pointer to its first element.

A string may be assigned in a declaration to either a character array or a variable of
type char *. The declarations

char color[] = "blue";
const char *colorPtr = "blue";

each initialize a variable to the string "blue". The first declaration creates a five-element
array color containing the characters 'b', 'l', 'u', 'e' and '\0'. The second dec-
laration creates pointer variable colorPtr that points to the letter b in the string "blue"
somewhere in memory.

Portability Tip 5.5
When a variable of type char * is initialized with a string literal, some compilers may place
the string in a location in memory where the string cannot be modified. If a string literal must
be modified in a program, it should be stored in a character array to ensure modifiability on
all systems. 5.5

The declaration char color[] = "blue"; could also be written

char color[] = { 'b', 'l', 'u', 'e', '\0' };

When declaring a character array to contain a string, the array must be large enough to store
the string and its terminating null character. The preceding declaration determines the size
of the array, based on the number of initializers provided in the initializer list.

Common Programming Error 5.15
Not allocating sufficient space in a character array to store the null character that terminates
a string is an error. 5.15

Common Programming Error 5.16
Creating or using a “string” that does not contain a terminating null character is an error. 5.16

Testing and Debugging Tip 5.3
When storing a string of characters in a character array, be sure that the array is large
enough to hold the largest string that will be stored. C++ allows strings of any length to be
stored. If a string is longer than the character array in which it is to be stored, characters
beyond the end of the array will overwrite data in memory following the array. 5.3

A string can be stored in an array using stream extraction with cin. For example, the
following statement can be used to store a string to character array word[20]:

cin >> word;

The string entered by the user is stored in word. The preceding statement reads characters
until a whitespace character or end-of-file indicator is encountered. Note that the string
should be no longer than 19 characters to leave room for the terminating null character. The
setw stream manipulator introduced in Chapter 2 can be used to ensure that the string read
into word does not exceed the size of the array. For example, the statement

362 Pointers and Strings Chapter 5

cin >> setw(20) >> word;

specifies that cin should read a maximum of 19 characters into array word and save the
20th location in the array to store the terminating null character for the string. The setw
stream manipulator applies only to the next value being input.

In some cases, it is desirable to input an entire line of text into an array. For this pur-
pose, C++ provides the function cin.getline. The cin.getline function takes
three arguments—a character array in which the line of text will be stored, a length and a
delimiter character. For example, the program segment

char sentence[80];
cin.getline(sentence, 80, '\n');

declares array sentence of 80 characters and reads a line of text from the keyboard into
the array. The function stops reading characters when the delimiter character '\n' is en-
countered, when the end-of-file indicator is entered or when the number of characters read
so far is one less than the length specified in the second argument. (The last character in the
array is reserved for the terminating null character.) If the delimiter character is encoun-
tered, it is read and discarded. The third argument to cin.getline has '\n' as a default
value, so the preceding function call could have been written as follows:

cin.getline(sentence, 80);

Chapter 12, Stream Input/Output, provides a detailed discussion of cin.getline and
other input/output functions.

Common Programming Error 5.17
Processing a single character as a string can lead to a fatal runtime error. A string is a point-
er—probably a respectably large integer. However, a character is a small integer (ASCII
values range 0–255). On many systems, this causes an error, because low memory addresses
are reserved for special purposes such as operating system interrupt handlers—so “access
violations” occur. 5.17

Common Programming Error 5.18
Passing a string as an argument to a function when a character is expected is a syntax error.5.18

5.12.2 String Manipulation Functions of the String-Handling Library
The string-handling library provides many useful functions for manipulating string data,
comparing strings, searching strings for characters and other strings, tokenizing strings
(separating strings into logical pieces) and determining the length of strings. This section
presents some common string-manipulation functions of the string-handling library (from
the C++ standard library). The functions are summarized in Fig. 5.27. The prototypes for
these functions are located in header file <cstring>.

Note that several functions in Fig. 5.27 contain parameters with data type size_t.
This type is defined in the header file <cstring> to be an unsigned integral type such as
unsigned int or unsigned long.

Common Programming Error 5.19
Forgetting to include the <cstring> header file when using functions from the string han-
dling library causes compilation errors. 5.19

Chapter 5 Pointers and Strings 363

Copying Strings with strcpy and strncpy
Function strcpy copies its second argument—a string—into its first argument—a char-
acter array that must be large enough to store the string and its terminating null character,
(which is also copied). Function strncpy is equivalent to strcpy, except that
strncpy specifies the number of characters to be copied from the string into the array.
Note that function strncpy does not necessarily copy the terminating null character of its
second argument—a terminating null character is written only if the number of characters

Function prototype Function description

char *strcpy(char *s1, const char *s2);

Copies the string s2 into the character array s1. The value of s1 is
returned.

char *strncpy(char *s1, const char *s2, size_t n);

Copies at most n characters of the string s2 into the character array
s1. The value of s1 is returned.

char *strcat(char *s1, const char *s2);

Appends the string s2 to the string s1. The first character of s2 over-
writes the terminating null character of s1. The value of s1 is returned.

char *strncat(char *s1, const char *s2, size_t n);

Appends at most n characters of string s2 to string s1. The first char-
acter of s2 overwrites the terminating null character of s1. The value
of s1 is returned.

int strcmp(const char *s1, const char *s2);

Compares the string s1 with the string s2. The function returns a value
of zero, less than zero or greater than zero if s1 is equal to, less than or
greater than s2, respectively.

int strncmp(const char *s1, const char *s2, size_t n);

Compares up to n characters of the string s1 with the string s2. The
function returns zero, less than zero or greater than zero if the n-charac-
ter portion of s1 is equal to, less than or greater than the corresponding
n-character portion of s2, respectively.

char *strtok(char *s1, const char *s2);

A sequence of calls to strtok breaks string s1 into “tokens”—logical
pieces such as words in a line of text—delimited by characters contained
in string s2. The first call contains s1 as the first argument, and subse-
quent calls to continue tokenizing the same string contain NULL as the
first argument. A pointer to the current token is returned by each call. If
there are no more tokens when the function is called, NULL is returned.

size_t strlen(const char *s);

Determines the length of string s. The number of characters preceding
the terminating null character is returned.

Fig. 5.27 String-manipulation functions of the string-handling library.

364 Pointers and Strings Chapter 5

to be copied is at least one more than the length of the string. For example, if "test" is
the second argument, a terminating null character is written only if the third argument to
strncpy is at least 5 (four characters in "test" plus one terminating null character). If
the third argument is larger than 5, null characters are appended to the array until the total
number of characters specified by the third argument is written.

Common Programming Error 5.20
Not appending a terminating null character to the first argument of a strncpy (in a state-
ment after the strncpy call) when the third argument is less than or equal to the length of
the string in the second argument can cause fatal run-time errors. 5.20

Figure 5.28 uses strcpy (line 16) to copy the entire string in array x into array y and
uses strncpy (line 22) to copy the first 14 characters of array x into array z. Line 23
appends a null character ('\0') to array z, because the call to strncpy in the program
does not write a terminating null character. (The third argument is less than the string length
of the second argument plus one.)

1 // Fig. 5.28: fig05_28.cpp
2 // Using strcpy and strncpy.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8
9

10 int main()
11 {
12 char x[] = "Happy Birthday to You";
13 char y[25];
14 char z[15];
15
16
17
18 cout << "The string in array x is: " << x
19 << "\nThe string in array y is: " << y << '\n';
20
21
22
23
24
25 cout << "The string in array z is: " << z << endl;
26
27 return 0; // indicates successful termination
28
29 } // end main

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

Fig. 5.28 strcpy and strncpy.

#include <cstring> // prototypes for strcpy and strncpy

strcpy(y, x); // copy contents of x into y

// copy first 14 characters of x into z
strncpy(z, x, 14); // does not copy null character
z[14] = '\0'; // append '\0' to z's contents

Chapter 5 Pointers and Strings 365

Concatenating Strings with strcat and strncat
Function strcat appends its second argument (a string) to its first argument (a character
array containing a string). The first character of the second argument replaces the null char-
acter ('\0') that terminates the string in the first argument. The programmer must ensure
that the array used to store the first string is large enough to store the combination of the first
string, the second string and the terminating null character (copied from the second string).
Function strncat appends a specified number of characters from the second string to the
first string and appends a terminating null character to the result. The program of Fig. 5.29
demonstrates function strcat (lines 18 and 29) and function strncat (line 24).

Comparing Strings with strcmp and strncmp
Figure 5.30 compares three strings using strcmp (lines 22, 24 and 25) and strncmp
(lines 28, 29 and 31). Function strcmp compares its first string argument with its second
string argument character by character. The function returns zero if the strings are equal, a

1 // Fig. 5.29: fig05_29.cpp
2 // Using strcat and strncat.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8
9

10 int main()
11 {
12 char s1[20] = "Happy ";
13 char s2[] = "New Year ";
14 char s3[40] = "";
15
16 cout << "s1 = " << s1 << "\ns2 = " << s2;
17
18
19
20 cout << "\n\nAfter strcat(s1, s2):\ns1 = " << s1
21 << "\ns2 = " << s2;
22
23
24
25
26 cout << "\n\nAfter strncat(s3, s1, 6):\ns1 = " << s1
27 << "\ns3 = " << s3;
28
29
30 cout << "\n\nAfter strcat(s3, s1):\ns1 = " << s1
31 << "\ns3 = " << s3 << endl;
32
33 return 0; // indicates successful termination
34
35 } // end main

Fig. 5.29 strcat and strncat. (Part 1 of 2.)

#include <cstring> // prototypes for strcat and strncat

strcat(s1, s2); // concatenate s2 to s1

// concatenate first 6 characters of s1 to s3
strncat(s3, s1, 6); // places '\0' after last character

strcat(s3, s1); // concatenate s1 to s3

366 Pointers and Strings Chapter 5

negative value if the first string is less than the second string and a positive value if the first
string is greater than the second string. Function strncmp is equivalent to strcmp, ex-
cept that strncmp compares up to a specified number of characters. Function strncmp
stops comparing characters if it reaches the null character in one of its string arguments.
The program prints the integer value returned by each function call.

s1 = Happy
s2 = New Year

After strcat(s1, s2):
s1 = Happy New Year
s2 = New Year

After strncat(s3, s1, 6):
s1 = Happy New Year
s3 = Happy

After strcat(s3, s1):
s1 = Happy New Year
s3 = Happy Happy New Year

1 // Fig. 5.30: fig05_30.cpp
2 // Using strcmp and strncmp.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <iomanip>
9

10 using std::setw;
11
12
13
14 int main()
15 {
16 char *s1 = "Happy New Year";
17 char *s2 = "Happy New Year";
18 char *s3 = "Happy Holidays";
19
20 cout << "s1 = " << s1 << "\ns2 = " << s2
21 << "\ns3 = " << s3 << "\n\nstrcmp(s1, s2) = "
22 << setw(2) <<
23 << "\nstrcmp(s1, s3) = " << setw(2)
24 << << "\nstrcmp(s3, s1) = "
25 << setw(2) << ;
26

Fig. 5.30 strcmp and strncmp. (Part 1 of 2.)

Fig. 5.29 strcat and strncat. (Part 2 of 2.)

#include <cstring> // prototypes for strcmp and strncmp

strcmp(s1, s2)

strcmp(s1, s3)
strcmp(s3, s1)

Chapter 5 Pointers and Strings 367

Common Programming Error 5.21
Assuming that strcmp and strncmp return one (a true value) when their arguments are
equal is a logic error. Both functions return zero (C++'s false value) for equality. Therefore,
when testing two strings for equality, the result of the strcmp or strncmp function should
be compared with zero to determine whether the strings are equal. 5.21

To understand just what it means for one string to be “greater than” or “less than” another
string, consider the process of alphabetizing a series of last names. The reader would, no
doubt, place “Jones” before “Smith,” because the first letter of “Jones” comes before the first
letter of “Smith” in the alphabet. But the alphabet is more than just a list of 26 letters—it is
an ordered list of characters. Each letter occurs in a specific position within the list. “Z” is
more than just a letter of the alphabet; “Z” is specifically the 26th letter of the alphabet.

How does the computer know that one letter comes before another? All characters are
represented inside the computer as numeric codes; when the computer compares two
strings, it actually compares the numeric codes of the characters in the strings.

In an effort to standardize character representations, most computer manufacturers
have designed their machines to utilize one of two popular coding schemes—ASCII or
EBCDIC. ASCII stands for “American Standard Code for Information Interchange,” and
EBCDIC stands for “Extended Binary Coded Decimal Interchange Code.” There are other
coding schemes, but these two are the most popular.

ASCII and EBCDIC are called character codes, or character sets. Most readers of this
book will be using desktop or notebook computers that use the ASCII character set. IBM
mainframe computers use the EBCDIC character set. As Internet and World Wide Web usage
becomes pervasive, the newer Unicode character set is growing rapidly in popularity. For
more information on Unicode, visit www.unicode.org. String and character manipula-

27 cout << "\n\nstrncmp(s1, s3, 6) = " << setw(2)
28 << << "\nstrncmp(s1, s3, 7) = "
29 << setw(2) <<
30 << "\nstrncmp(s3, s1, 7) = "
31 << setw(2) << << endl;
32
33 return 0; // indicates successful termination
34
35 } // end main

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Fig. 5.30 strcmp and strncmp. (Part 2 of 2.)

strncmp(s1, s3, 6)
strncmp(s1, s3, 7)

strncmp(s3, s1, 7)

368 Pointers and Strings Chapter 5

tions actually involve the manipulation of the appropriate numeric codes and not the charac-
ters themselves. This explains the interchangeability of characters and small integers in C++.
Since it is meaningful to say that one numeric code is greater than, less than or equal to
another numeric code, it becomes possible to relate various characters or strings to one
another by referring to the character codes. Appendix B contains the ASCII character codes.

Portability Tip 5.6
The internal numeric codes used to represent characters may be different on different com-
puters, because these computers may use different character sets. 5.6

Portability Tip 5.7
Do not explicitly test for ASCII codes, as in if (rating == 65); rather, use the corre-
sponding character constant, as in if (rating == 'A'). 5.7

Tokenizing a String with strtok
Function strtok breaks a string into a series of tokens. A token is a sequence of characters
separated by delimiting characters (usually spaces or punctuation marks). For example, in
a line of text, each word can be considered a token, and the spaces separating the words can
be considered delimiters.

Multiple calls to strtok are required to break a string into tokens (assuming that the
string contains more than one token). The first call to strtok contains two arguments, a
string to be tokenized and a string containing characters that separate the tokens (i.e., delim-
iters). Line 19 in Fig. 5.31 assigns to tokenPtr a pointer to the first token in sentence.
The second argument, " ", indicates that tokens in sentence are separated by spaces.
Function strtok searches for the first character in sentence that is not a delimiting
character (space). This begins the first token. The function then finds the next delimiting
character in the string and replaces it with a null ('\0') character. This terminates the cur-
rent token. Function strtok saves a pointer to the next character following the token in
sentence and returns a pointer to the current token.

1 // Fig. 5.31: fig05_31.cpp
2 // Using strtok.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8
9

10 int main()
11 {
12 char sentence[] = "This is a sentence with 7 tokens";
13 char *tokenPtr;
14
15 cout << "The string to be tokenized is:\n" << sentence
16 << "\n\nThe tokens are:\n\n";
17

Fig. 5.31 strtok. (Part 1 of 2.)

#include <cstring> // prototype for strtok

Chapter 5 Pointers and Strings 369

Subsequent calls to strtok to continue tokenizing sentence contain NULL as the
first argument (line 24). The NULL argument indicates that the call to strtok should con-
tinue tokenizing from the location in sentence saved by the last call to strtok. Note that
strtok maintains this saved information in a manner that is not visible to the programmer.
If no tokens remain when strtok is called, strtok returns NULL. The program of
Fig. 5.31 uses strtok to tokenize the string "This is a sentence with 7 tokens".
The program prints each token on a separate line. Line 28 outputs sentence after tokeni-
zation. Note that strtok modifies the input string; therefore, a copy of the string should be
made if the program requires the original after the calls to strtok. When sentence is
output after tokenization, note that only the word “This” prints, because strtok replaced
each blank in sentence with a null character ('\0') during the tokenization process.

Common Programming Error 5.22
Not realizing that strtok modifies the string being tokenized and then attempting to use
that string as if it were the original unmodified string is a logic error. 5.22

Determining String Lengths
Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length. The program of
Fig. 5.32 demonstrates function strlen.

18 // begin tokenization of sentence
19
20
21 // continue tokenizing sentence until tokenPtr becomes NULL
22 while (tokenPtr != NULL) {
23 cout << tokenPtr << '\n';
24 // get next token
25
26 } // end while
27
28 cout << "\nAfter strtok, sentence = " << sentence << endl;
29
30 return 0; // indicates successful termination
31
32 } // end main

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:

This
is
a
sentence
with
7
tokens

After strtok, sentence = This

Fig. 5.31 strtok. (Part 2 of 2.)

tokenPtr = strtok(sentence, " ");

tokenPtr = strtok(NULL, " ");

370 Pointers and Strings Chapter 5

5.13 [Optional Case Study] Thinking About Objects:
Collaborations Among Objects
This is the last of our object-oriented design sections before we begin our study of C++ ob-
ject-oriented programming in Chapter 6. After we discuss the interactions among objects in
this section and discuss creating classes and objects in Chapter 6, we begin coding the ele-
vator simulator in C++. To complete the elevator simulator, we also use the C++ techniques
discussed in Chapter 7 and Chapter 9. We have included at the end of this section a list of
Internet and World Wide Web UML resources and a bibliography of UML references.

In the “Thinking About Objects” section at the end of Chapter 4, we began to investigate
how objects interact by discussing how a Scheduler object interacts with other objects to
schedule a person to step onto a floor. In this section, we concentrate on the interactions
among other objects in the system. When two or more objects communicate with one another
to accomplish a task, they interact with one another by sending and receiving messages.

When two objects interact, a message sent by one object invokes an operation of the
second object (just as pressing down the accelerator pedal in a car signals the car to “go faster”
and pressing the brake pedal signals the car to “go slower”). In the “Thinking About Objects”
section at the end of Chapter 4, we determined many of the operations of the classes in our
system. In this section, we concentrate on the messages that invoke these operations.

1 // Fig. 5.32: fig05_32.cpp
2 // Using strlen.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8
9

10 int main()
11 {
12 char *string1 = "abcdefghijklmnopqrstuvwxyz";
13 char *string2 = "four";
14 char *string3 = "Boston";
15
16 cout << "The length of \"" << string1
17 << "\" is " <<
18 << "\nThe length of \"" << string2
19 << "\" is " <<
20 << "\nThe length of \"" << string3
21 << "\" is " << << endl;
22
23 return 0; // indicates successful termination
24
25 } // end main

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Fig. 5.32 strlen.

#include <cstring> // prototype for strlen

strlen(string1)

strlen(string2)

strlen(string3)

Chapter 5 Pointers and Strings 371

Figure 5.33 is the table of classes and verb phrases from Section 4.10. We removed all the
verb phrases that do not correspond to a message sent between two objects. (For example, we
eliminate “moves” in the Elevator because the Elevator sends this message to itself.)
The remaining phrases are likely to correspond to the interactions between objects in our
system. We associate the phrases “provides the time to the scheduler” and “provides the time
to the elevator” with class Building, because we decided in Chapter 4 that the building
controls the simulation. We associate the phrases “increments the clock time” and “gets the
time from the clock” with class Building for the same reason.

We examine the list of verbs to determine the interactions in our system. For example,
class Elevator lists the phrase “resets the elevator button.” To accomplish this task, an
object of class Elevator must send the resetButton message to an object of class
ElevatorButton, invoking the resetButton operation of that class. Figure 5.34
lists all the interactions that can be gleaned from our table of verb phrases.

Class Verb phrases

Elevator resets the elevator button, sounds the elevator bell, signals its arrival
to a floor, opens its door, closes its door

Clock none in problem statement

Scheduler verifies that a floor is unoccupied

Person steps onto a floor, presses floor button, presses elevator button,
enters elevator, exits elevator

Floor resets floor button, turns off light, turns on light

FloorButton summons elevator

ElevatorButton signals elevator to prepare to leave

Door (opening of door) signals person to exit elevator, (opening of door)
signals person to enter elevator

Bell none in problem statement

Light none in problem statement

Building increments the clock time, gets the time from the clock, provides the
time to the scheduler, provides the time to the elevator

Fig. 5.33 Modified list of verb phrases for classes in the system.

An object of class Sends the message To an object of class

Elevator resetButton
ringBell
elevatorArrived
openDoor
closeDoor

ElevatorButton
Bell
Floor
Door
Door

Fig. 5.34 Collaborations that occur in the elevator system. (Part 1 of 2.)

372 Pointers and Strings Chapter 5

Collaboration Diagrams
Now let us consider the objects that must interact so that people in our simulation can enter
and exit the elevator when it arrives on a floor. A collaboration consists of a collection of
objects that work together to perform a task. The UML enables us to model such objects,
and their interactions, with collaboration diagrams. Collaboration diagrams and sequence
diagrams both provide information about how objects interact, but each diagram emphasiz-
es different information. Sequence diagrams emphasize when interactions occur. Collabo-
ration diagrams emphasize which objects participate in the interactions and the
relationships among those objects.

Figure 5.35 shows a collaboration diagram that models the interaction among objects
in our system as objects of class Person enter and exit the elevator. The collaboration
begins when the elevator arrives on a floor. As in a sequence diagram, an object in a col-
laboration diagram is represented as a rectangle that encloses the object’s name.

Interacting objects are connected with solid lines, and objects pass messages to one
another along these lines in the direction shown by the arrows. Each message’s name and
a message number appear next to the corresponding arrow.

The sequence of messages in a collaboration diagram progresses in numerical order from
least to greatest. In this diagram, the numbering starts with message 1. When the elevator

Clock ----- -----

Scheduler stepOntoFloor
isOccupied

Person
Floor

Person pressButton
pressButton
passengerEnters
passengerExits
personArrives

FloorButton
ElevatorButton
Elevator
Elevator
Floor

Floor resetButton
turnOff
turnOn

FloorButton
Light
Light

FloorButton summonElevator Elevator

ElevatorButton prepareToLeave Elevator

Door exitElevator
enterElevator

Person
Person

Bell ----- -----

Light ----- -----

Building tick
getTime
processTime
processTime

Clock
Clock
Scheduler
Elevator

An object of class Sends the message To an object of class

Fig. 5.34 Collaborations that occur in the elevator system. (Part 2 of 2.)

Chapter 5 Pointers and Strings 373

arrives at a floor, the first thing it does is send this message (resetButton) to the elevator
button to reset the button. The elevator then sends the ringBell message (message 2) to the
bell. Then the elevator notifies the floor of its arrival (message 3), so that the floor can reset
its button and turn on its light (messages 3.1 and 3.2, respectively).

After the floor has reset its button and turned on its light, the elevator opens its door
(message 4). At this point, the door sends the exitElevator message (message 4.1) to
the passenger object.1 The passenger object notifies the elevator of its intent to exit
via the passengerExits message (message 4.1.1).

After the person riding the elevator has exited, the person waiting on the floor (the
waitingPassenger object) can enter the elevator. Notice that the door sends the
enterElevator message (message 4.2) to the waitingPassenger object after the
passenger object sends the passengerExits message to the elevator (message
4.1.1). This sequence ensures that a person on the floor waits for an elevator passenger to
exit before the person on the floor enters the elevator. The waitingPassenger object
enters the elevator via the passengerEnters message (message 4.2.1). Determining
the sequence of these messages and modeling them with a diagram will aid us as we imple-
ment the various classes in our system.

Fig. 5.35 Collaboration diagram for loading and unloading passengers.

1. In the real world, a person riding on the elevator waits until the door opens before exiting the elevator. We
must model this behavior; therefore, we have the door send a message to the passenger object in the ele-
vator. This message represents a visual cue to the person in the elevator. When the person receives the cue,
the person can exit the elevator.

: FloorButton

: Floor

passenger : Person

3.1: resetButton() 3.2: turnOn()

3: elevatorArrived()

4.1.1: passengerExits()4.2.1: passengerEnters()

1: resetButton() 2: ringBell()

4: openDoor()

4.1: exitElevator()4.2: enterElevator()

: Light

: ElevatorwaitingPassenger : Person

: Bell: ElevatorButton

: Door

374 Pointers and Strings Chapter 5

Summary
We now have a reasonably complete listing of the classes and objects to implement our el-
evator simulator, as well as the interactions among the objects of these classes. In the next
chapter, we begin our study of object-oriented programming in C++. After reading
Chapter 6, we will be ready to write a substantial portion of the elevator simulator in C++.
After completing Chapter 7, we implement a complete, working elevator simulator. In
Chapter 9, we discuss how to use inheritance to exploit commonality among classes to min-
imize the amount of software needed to implement a system.

Let us summarize our simplified object-oriented development process2 that we have
presented in Chapter 2–Chapter 5:

1. In the analysis phase, meet with the clients (the people who want you to build their
system) and gather as much information as possible about the system. With this
information, create the use cases that describe the ways in which users interact
with the system. (In our case study, we do not concentrate on the analysis phase.
The results of this phase are represented in the problem statement, and the use cas-
es derive from this statement.) We note again that real-world systems often have
many use cases. Throughout the remaining steps, we continually evaluate our de-
sign against the use cases to be sure that our end product matches the information
we obtained from analyzing the system requirements.

2. Begin identifying the classes in the system by listing the nouns in the problem
statement. Filter the list by eliminating nouns that represent obvious attributes of
classes and other nouns that have no relevance to the software system being mod-
eled. Create a class diagram that models the classes in the system and their rela-
tionships (associations).

3. Extract the attributes of each class from the problem statement by listing words
and phrases that describe each class in the system.

4. Learn more about the dynamic nature of the system. Create statechart diagrams to
learn how the objects in the system change over time.

5. Examine verbs and verb phrases associated with each class. Use these phrases to
extract the operations of the classes in our system. Activity diagrams can help
model the details of these operations.

6. Examine the interactions among various objects. Use sequence and collaboration
diagrams to model these interactions. Add attributes and operations to the classes
as the design process reveals the need for them.

7. At this point, our design probably still has a few missing pieces. These will be-
come apparent as we begin to implement our elevator simulator in C++ in the
“Thinking About Objects” section at the end of Chapter 6.

2. We created this basic OOD process to introduce readers to object-oriented design using the UML.
Readers who wish to pursue this topic in more depth can study the more formal and detailed Ra-
tional Unified Process. For more information on this software-design methodology, we recom-
mend reading The Rational Unified Process: An Introduction (2nd Edition) by Philippe Kruchten
and The Unified Software Develpment Process by Ivar Jacobson, Grady Booch and James Rum-
baugh. For online resources, visit www.therationaledge.com, which contains numerous
articles on this process.

Chapter 5 Pointers and Strings 375

UML Resources on the Internet and World Wide Web
The following is a collection of Internet and World Wide Web resources for the UML.
These include the UML 1.4 specification and other reference materials, general resources,
tutorials, FAQs, articles, whitepapers and software.

References
www.omg.org
This is the Object Management Group (OMG) site. The OMG is responsible for overseeing mainte-
nance and future revisions of the UML. The site contains information about the UML and other ob-
ject-oriented technologies.

www.rational.com
Rational Software Corporation developed the UML. Its Web site contains information about the UML
and the creators of the UML—Grady Booch, James Rumbaugh and Ivar Jacobson.

www.omg.org/technology/documents/formal/uml.htm
This site contains the official UML 1.4 specification.

www.rational.com/uml/resources/quick/index.jtmpl
Rational Software Corporation’s UML quick-reference guide can be found at this site.

www.holub.com/class/uml/uml.html
This site provides a detailed UML quick-reference card with additional commentary.

softdocwiz.com/UML.htm
Kendall Scott, an author of several UML resources, maintains a UML dictionary at this site.

Resources
www.omg.org/uml/
This site contains the OMG UML resource page.

www.rational.com/uml/index.jsp
Rational Software Corporation’s UML resource page

www.platinum.com/corp/uml/uml.htm
UML Partners member Platinum Technology maintains this UML resource site.

www.cetus-links.org/oo_uml.html
This site contains hundreds of links to other UML sites, including information, tutorials and software.

www.embarcadero.com/support/uml_central.asp
This site contains links to several UML-related items, including references, tutorials and articles.

www.devx.com/uml
This site contains a wealth of UML information, including articles and links to news groups and to
other sites.

www.celigent.com/uml
This site contains general information and links to important sites on the Web.

www.methods-tools.com/cgi-bin/DiscussionUML.cgi
This site provides access to several UML discussion groups.

www.pols.co.uk/usecasezone/index.htm
This site provides resources and articles about applying use cases.

www.ics.uci.edu/pub/arch/uml/uml_books_and_tools.html
This site contains links to information about books on the UML, as well as a list of tools that support
UML notation.

376 Pointers and Strings Chapter 5

home.earthlink.net/~salhir
Sinan Si Alhir, author of UML in a Nutshell, maintains this site; it includes links to many UML re-
sources.

www.rational.com/products/rup/index.jsp
This is the main site for the Rational Unified Process (RUP), Rational’s OOAD methodology.

www.cetus-links.org/oo_ooa_ood_methods.html
This site contains links to many software development methodologies, including RUP, Extreme Pro-
gramming, the Booch methodology and many more.

Software
www.rational.com/products/rose/index.jsp
This site is the home page for Rational Software Corporation’s UML visual modeling tool, Rational
Rose.™ You can download a trial version from this location and use it free for a limited time.

www.sparxsystems.com.au/ea.htm
Sparx Systems offers Enterprise Architect, a UML OOAD tool. The professional version provides
code generation and reverse-engineering support for C++, Java and C#, among others.

www.visualobject.com
Visual Object Modelers has created a visual UML modeling tool. You can download a limited dem-
onstration version from this Web site and use it free for a limited time.

www.embarcadero.com/downloads/download.asp
Embarcadero provides Desribe™ Enterprise, a UML design tool.

www.microgold.com/version2/stage/product.html
Microgold Software, Inc. has created WithClass, a software design application that supports the UML
notation.

dir.lycos.com/Computers/Software/Object_Oriented/Methodologies/
UML/Tools
This site lists dozens of UML modeling tools and their home pages.

www.methods-tools.com/tools/modeling.html
This site contains a listing of many object modeling tools, including those that support the UML.

Articles and Whitepapers
www.omg.org/news/pr99/UML_2001_CACM_Oct99_p29-Kobryn.pdf
This article, written by Cris Kobryn, explores the past, present and future of the UML.

www.db.informatik.uni-bremen.de/umlbib
The UML Bibliography provides names and authors of many UML-related articles. You can search
articles by author or title.

www.ratio.co.uk/white.html
You can read a whitepaper that outlines a process for OOAD using the UML at this site. The paper
also includes some implementation in C++.

www.conallen.com/whitepapers/webapps/ModelingWebApplications.htm
This site contains a case study that models Web applications using the UML.

www.sdmagazine.com
The Software Development Magazine Online site has a repository of many articles on the UML. You
can search by subject or browse article titles.

Chapter 5 Pointers and Strings 377

FAQs
www.rational.com/uml/gstart/faq.jsp
This is the location of Rational Software Corporation’s UML FAQ.

www.jguru.com/faq
Enter UML in the search box to access a this site’s UML FAQ.

Bibliography
Alhir, S. UML in a Nutshell. Cambridge: O’Reily & Associates, Inc., 1998.

Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User Guide. Reading,
MA: Addison-Wesley, 1999.

Firesmith, D.G., and Henderson-Sellers, B. “Clarifying Specialized Forms of Association in UML
and OML.” Journal of Object-Oriented Programming May 1998: 47–50.

Fowler, M., and Scott, K. UML Distilled: Applying the Standard Object Modeling Language. Read-
ing, MA: Addison-Wesley, 1997.

Johnson, L.J. “Model Behavior.” Enterprise Development May 2000: 20–28.

McLaughlin, M., and A. Moore. “Real-Time Extensions to the UML.” Dr. Dobb’s Journal Decem-
ber 1998: 82–93.

Melewski, D. “UML Gains Ground.” Application Development Trends October 1998: 34–44.

Melewski, D. “UML: Ready for Prime Time?” Application Development Trends November 1997:
30–44.

Melewski, D. “Wherefore and what now, UML?” Application Development Trends December 1999:
61–68.

Muller, P. Instant UML. Birmingham, UK: Wrox Press Ltd, 1997.

Perry, P. “UML Steps to the Plate.” Application Development Trends May 1999: 33–36.

Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual.
Reading, MA: Addison-Wesley, 1999.

Schmuller, J. Sam’s Teach Yourself UML in 24 Hours. Indianapolis: Macmillan Computer Publish-
ing, 1999.

The Unified Modeling Language Specification: Version 1.4. Framingham, MA: Object Management
Goup (OMG), 2001.

SUMMARY
• Pointers are variables that contain as their values addresses of other variables.

• The declaration

int *ptr;

declares ptr to be a pointer to a variable of type int and is read, “ptr is a pointer to int.” The
* as used here in a declaration indicates that the variable is a pointer.

• There are three values that can be used to initialize a pointer: 0, NULL or an address of an object
of the same type. Initializing a pointer to 0 and initializing that same pointer to NULL are identi-
cal—0 is the convention in C++.

• The only integer that can be assigned to a pointer without casting is zero.

• The & (address) operator returns the memory address of its operand.

378 Pointers and Strings Chapter 5

• The operand of the address operator must be a variable name (or another lvalue); the address op-
erator cannot be applied to constants or to expressions that do not return a reference.

• The * operator, referred to as the indirection (or dereferencing) operator, returns a synonym, alias
or nickname for the name of the object that its operand points to in memory. This is called deref-
erencing the pointer.

• When calling a function with an argument that the caller wants the called function to modify, the
address of the argument may be passed. The called function then uses the indirection operator (*)
to dereference the pointer and modify the value of the argument in the calling function.

• A function receiving an address as an argument must have a pointer as its corresponding parameter.

• The const qualifier enables the programmer to inform the compiler that the value of a particular
variable cannot be modified through the specified identifier. If an attempt is made to modify a
const value, the compiler issues either a warning or an error, depending on the particular compiler.

• There are four ways to pass a pointer to a function—a nonconstant pointer to nonconstant data, a
nonconstant pointer to constant data, a constant pointer to nonconstant data and a constant pointer
to constant data.

• The value of the array name is the address of (a pointer to) the array’s first element.

• To pass a single element of an array by reference using pointers, pass the address of the specific
array element.

• C++ provides unary operator sizeof to determine the size of an array (or of any other data type,
variable or constant) in bytes at compile time.

• When applied to the name of an array, the sizeof operator returns the total number of bytes in
the array as an integer.

• The arithmetic operations that may be performed on pointers are incrementing (++) a pointer, dec-
rementing (--) a pointer, adding (+ or +=) an integer to a pointer, subtracting (- or -=) an integer
from a pointer and subtracting one pointer from another.

• When an integer is added or subtracted from a pointer, the pointer is incremented or decremented
by that integer times the size of the object to which the pointer refers.

• Pointer arithmetic operations should only be performed on contiguous portions of memory such
as an array. All elements of an array are stored contiguously in memory.

• Pointers can be assigned to one another if both pointers are of the same type. Otherwise, a cast
must be used. The exception to this is a void * pointer, which is a generic pointer type that can
hold pointer values of any type. Pointers to void can be assigned pointers of other types. A void
* pointer can be assigned to a pointer of another type only with an explicit type cast.

• The only valid operations on a void * pointer are comparing void * pointers with other pointers,
assigning addresses to void * pointers and casting void * pointers to valid pointer types.

• Pointers can be compared using the equality and relational operators. Comparisons using relational
operators are meaningful only if the pointers point to members of the same array.

• Pointers that point to arrays can be subscripted exactly as array names can.

• An array name is equivalent to a constant pointer to the first element of the array.

• In pointer/offset notation, if the pointer points to the first element of the array, the offset is the same
as an array subscript.

• All subscripted array expressions can be written with a pointer and an offset, using either the name
of the array as a pointer or using a separate pointer that points to the array.

• Arrays may contain pointers.

• A pointer to a function is the address where the code for the function resides.

Chapter 5 Pointers and Strings 379

• Pointers to functions can be passed to functions, returned from functions, stored in arrays and as-
signed to other pointers.

• A common use of function pointers is in so-called menu-driven systems. The function pointers are
used to select which function to call for a particular menu item.

• Function strcpy copies its second argument—a string—into its first argument—a character ar-
ray. The programmer must ensure that the target array is large enough to store the string and its
terminating null character.

• Function strncpy is equivalent to strcpy, except that a call to strncpy specifies the number
of characters to be copied from the string into the array. The terminating null character will be cop-
ied only if the number of characters to be copied is at least one more than the length of the string.

• Function strcat appends its second string argument—including the terminating null charac-
ter—to its first string argument. The first character of the second string replaces the null ('\0')
character of the first string. The programmer must ensure that the target array used to store the first
string is large enough to store both the first string and the second string.

• Function strncat is equivalent to strcat, except that a call to strncat appends a specified
number of characters from the second string to the first string. A terminating null character is ap-
pended to the result.

• Function strcmp compares its first string argument with its second string argument character by
character. The function returns zero if the strings are equal, a negative value if the first string is
less than the second string and a positive value if the first string is greater than the second string.

• Function strncmp is equivalent to strcmp, except that strncmp compares a specified number
of characters. If the number of characters in one of the strings is less than the number of characters
specified, strncmp compares characters until the null character in the shorter string is encountered.

• A sequence of calls to strtok breaks a string into tokens that are separated by characters con-
tained in a second string argument. The first call specifies the string to be tokenized as the first
argument, and subsequent calls to continue tokenizing the same string specify NULL as the first
argument. The function returns a pointer to the current token from each call. If there are no more
tokens when strtok is called, NULL is returned.

• Function strlen takes a string as an argument and returns the number of characters in the
string—the terminating null character is not included in the length of the string.

TERMINOLOGY
add a pointer and an integer copying strings
address operator (&) <cstring>
appending strings to other strings decrement a pointer
array of pointers delimiter
array of strings dereference a pointer
ASCII dereferencing operator (*)
<cctype> directly reference a variable
character code EBCDIC
character constant function pointer
character pointer increment a pointer
character set indefinite postponement
comparing strings indirection
const indirection operator (*)
constant pointer indirectly reference a variable
constant pointer to constant data initialize a pointer
constant pointer to nonconstant data islower

380 Pointers and Strings Chapter 5

SELF-REVIEW EXERCISES
5.1 Answer each of the following:

a) A pointer is a variable that contains as its value the of another variable.
b) The three values that can be used to initialize a pointer are , and

.
c) The only integer that can be assigned directly to a pointer is .

5.2 State whether the following are true or false. If the answer is false, explain why.
a) The address operator & can be applied only to constants and to expressions.
b) A pointer that is declared to be of type void can be dereferenced.
c) Pointers of different types may not be assigned to one another without a cast operation.

5.3 For each of the following, write C++ statements that perform the specified task. Assume that
double-precision, floating-point numbers are stored in eight bytes and that the starting address of the
array is at location 1002500 in memory. Each part of the exercise should use the results of previous
parts where appropriate.

a) Declare an array of type double called numbers with 10 elements, and initialize the
elements to the values 0.0, 1.1, 2.2, …, 9.9. Assume that the symbolic constant
SIZE has been defined as 10.

b) Declare a pointer nPtr that points to a variable of type double.
c) Use a for structure to print the elements of array numbers using array subscript nota-

tion. Print each number with one position of precision to the right of the decimal point.

length of a string strcat
literal strcmp
nonconstant pointer to constant data strcpy
nonconstant pointer to nonconstant data string
NULL pointer string concatenation
numeric code of a character string constant
offset string literal
pass-by-reference string processing
pass-by-value strlen
pointer strncat
pointer arithmetic strncmp
pointer assignment strncpy
pointer comparison strtok
pointer expression subtracting an integer from a pointer
pointer/offset notation subtracting two pointers
pointer subscripting token
pointer to a function tokenizing strings
pointer to void (void *) toupper
pointer types void * (pointer to void)
principle of least privilege word processing
sizeof

Terminology for Optional “Thinking About Objects” Section
collaboration rectangle symbol in UML

collaboration diagramcollaboration diagram
interaction sequence of messages
message solid line with arrowhead symbol in UML

collaboration diagramnumbers in UML collaboration diagram
objects that participate in interaction when interactions occur

Chapter 5 Pointers and Strings 381

d) Write two separate statements that each assign the starting address of array numbers to
the pointer variable nPtr.

e) Use a for structure to print the elements of array numbers using pointer/offset notation
with pointer nPtr.

f) Use a for structure to print the elements of array numbers using pointer/offset notation
with the array name as the pointer.

g) Use a for structure to print the elements of array numbers using pointer/subscript no-
tation with pointer nPtr.

h) Refer to the fourth element of array numbers using array subscript notation, pointer/off-
set notation with the array name as the pointer, pointer subscript notation with nPtr and
pointer/offset notation with nPtr.

i) Assuming that nPtr points to the beginning of array numbers, what address is refer-
enced by nPtr + 8? What value is stored at that location?

j) Assuming that nPtr points to numbers[5], what address is referenced by nPtr after
nPtr -= 4 is executed? What is the value stored at that location?

5.4 For each of the following, write a single statement that performs the specified task. Assume
that floating-point variables number1 and number2 have been declared and that number1 has
been initialized to 7.3. Assume that variable ptr is of type char *. Assume that arrays s1 and s2
are each 100-element char arrays that are initialized with string literals.

a) Declare the variable fPtr to be a pointer to an object of type double.
b) Assign the address of variable number1 to pointer variable fPtr.
c) Print the value of the object pointed to by fPtr.
d) Assign the value of the object pointed to by fPtr to variable number2.
e) Print the value of number2.
f) Print the address of number1.
g) Print the address stored in fPtr. Is the value printed the same as the address of number1?
h) Copy the string stored in array s2 into array s1.
i) Compare the string in s1 with the string in s2, and print the result.
j) Append the first 10 characters from the string in s2 to the string in s1.
k) Determine the length of the string in s1, and print the result.
l) Assign to ptr the location of the first token in s2. The tokens delimiters are commas (,).

5.5 Perform the task specified by each of the following statements:
a) Write the function header for a function called exchange that takes two pointers to dou-

ble-precision, floating-point numbers x and y as parameters and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for a function called evaluate that returns an integer and

that takes as parameters integer x and a pointer to function poly. Function poly takes
an integer parameter and returns an integer.

d) Write the function prototype for the function in part (c).
e) Write two statements that each initialize character array vowel with the string of vow-

els, "AEIOU".

5.6 Find the error in each of the following program segments. Assume the following declarations
and statements:

int *zPtr; // zPtr will reference array z
int *aPtr = 0;
void *sPtr = 0;
int number;
int z[5] = { 1, 2, 3, 4, 5 };

sPtr = z;

382 Pointers and Strings Chapter 5

a) ++zPtr;
b) // use pointer to get first value of array

number = zPtr;
c) // assign array element 2 (the value 3) to number

number = *zPtr[2];
d) // print entire array z

for (int i = 0; i <= 5; i++)
 cout << zPtr[i] << endl;

e) // assign the value pointed to by sPtr to number
number = *sPtr;

f) ++z;
g) char s[10];

cout << strncpy(s, "hello", 5) << endl;
h) char s[12];

strcpy(s, "Welcome Home");
i) if (strcmp(string1, string2))

 cout << "The strings are equal" << endl;

5.7 What (if anything) prints when each of the following statements is performed? If the state-
ment contains an error, describe the error and indicate how to correct it. Assume the following vari-
able declarations:

char s1[50] = "jack";
char s2[50] = "jill";
char s3[50];

a) cout << strcpy(s3, s2) << endl;
b) cout << strcat(strcat(strcpy(s3, s1), " and "), s2)

 << endl;
c) cout << strlen(s1) + strlen(s2) << endl;
d) cout << strlen(s3) << endl;

ANSWERS TO SELF-REVIEW EXERCISES
5.1 a) address. b) 0, NULL, an address. c) 0.

5.2 a) False. The operand of the address operator must be an lvalue; the address operator cannot
be applied to constants or to expressions that do not result in references.

b) False. A pointer to void cannot be dereferenced. Such a pointer does not have a type
that enables the compiler to determine the number of bytes of memory to dereference.

c) False. Pointers of any type can be assigned to void pointers. Pointers of type void can
be assigned to pointers of other types only with an explicit type cast.

5.3 a) double numbers[SIZE] =
 { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9 };

b) double *nPtr;
c) cout << fixed << showpoint << setprecision(1);

for (int i = 0; i < SIZE; i++)
 cout << numbers[i] << ' ';

d) nPtr = numbers;
nPtr = &numbers[0];

e) cout << fixed << showpoint << setprecision(1);
for (int j = 0; j < SIZE; j++)
 cout << *(nPtr + j) << ' ';

Chapter 5 Pointers and Strings 383

f) cout << fixed << showpoint << setprecision(1);
for (int k = 0; k < SIZE; k++)
 cout << *(numbers + k) << ' ';

g) cout << fixed << showpoint << setprecision(1);
for (int m = 0; m < SIZE; m++)
 cout << nPtr[m] << ' ';

h) numbers[3]
*(numbers + 3)
nPtr[3]
*(nPtr + 3)

i) The address is 1002500 + 8 * 8 = 1002564. The value is 8.8.
j) The address of numbers[5] is 1002500 + 5 * 8 = 1002540.

The address of nPtr -= 4 is 1002540 - 4 * 8 = 1002508.
The value at that location is 1.1.

5.4 a) double *fPtr;
b) fPtr = &number1;
c) cout << "The value of *fPtr is " << *fPtr << endl;
d) number2 = *fPtr;
e) cout << "The value of number2 is " << number2 << endl;
f) cout << "The address of number1 is " << &number1 << endl;
g) cout << "The address stored in fPtr is " << fPtr << endl;

Yes, the value is the same.
h) strcpy(s1, s2);
i) cout << "strcmp(s1, s2) = " << strcmp(s1, s2) << endl;
j) strncat(s1, s2, 10);
k) cout << "strlen(s1) = " << strlen(s1) << endl;
l) ptr = strtok(s2, ",");

5.5 a) void exchange(double *x, double *y)
b) void exchange(double *, double *);
c) int evaluate(int x, int (*poly)(int))
d) int evaluate(int, int (*)(int));
e) char vowel[] = "AEIOU";

char vowel[] = { 'A', 'E', 'I', 'O', 'U', '\0' };

5.6 a) Error: zPtr has not been initialized.
Correction: Initialize zPtr with zPtr = z;

b) Error: The pointer is not dereferenced.
Correction: Change the statement to number = *zPtr;

c) Error: zPtr[2] is not a pointer and should not be dereferenced.
Correction: Change *zPtr[2] to zPtr[2].

d) Error: Referring to an array element outside the array bounds with pointer subscripting.
Correction: Change the relational operator in the for structure to < to prevent walking
off the end of the array.

e) Error: Dereferencing a void pointer.
Correction: To dereference the void pointer, it must first be cast to an integer pointer.
Change the preceding statement to number = *((int *) sPtr);

f) Error: Trying to modify an array name with pointer arithmetic.
Correction: Use a pointer variable instead of the array name to accomplish pointer arith-
metic, or subscript the array name to refer to a specific element.

g) Error: Function strncpy does not write a terminating null character to array s, because
its third argument is equal to the length of the string "hello".

384 Pointers and Strings Chapter 5

Correction: Make 6 the third argument of strncpy or assign '\0' to s[5] to ensure
that the terminating null character is added to the string.

h) Error: Character array s is not large enough to store the terminating null character.
Correction: Declare the array with more elements.

i) Error: Function strcmp will return 0 if the strings are equal; therefore, the condition in
the if structure will be false, and the output statement will not be executed.
Correction: Explicitly compare the result of strcmp with 0 in the condition of the if
structure.

5.7 a) jill
b) jack and jill
c) 8
d) 13

EXERCISES
5.8 State whether the following are true or false. If false, explain why.

a) Two pointers that point to different arrays cannot be compared meaningfully.
b) Because the name of an array is a pointer to the first element of the array, array names

can be manipulated in precisely the same manner as pointers.

5.9 For each of the following, write C++ statements that perform the specified task. Assume that
unsigned integers are stored in two bytes and that the starting address of the array is at location
1002500 in memory.

a) Declare an array of type unsigned int called values with five elements, and initial-
ize the elements to the even integers from 2 to 10. Assume that the symbolic constant
SIZE has been defined as 5.

b) Declare a pointer vPtr that points to an object of type unsigned int.
c) Use a for structure to print the elements of array values using array subscript notation.
d) Write two separate statements that assign the starting address of array values to pointer

variable vPtr.
e) Use a for structure to print the elements of array values using pointer/offset notation.
f) Use a for structure to print the elements of array values using pointer/offset notation

with the array name as the pointer.
g) Use a for structure to print the elements of array values by subscripting the pointer

to the array.
h) Refer to the fifth element of values using array subscript notation pointer/offset nota-

tion with the array name as the pointer, pointer subscript notation and pointer/offset
notation.

i) What address is referenced by vPtr + 3? What value is stored at that location?
j) Assuming that vPtr points to values[4], what address is referenced by vPtr -=

4? What value is stored at that location?

5.10 For each of the following, write a single statement that performs the specified task. Assume
that long integer variables value1 and value2 have been declared and that value1 has been
initialized to 200000.

a) Declare the variable longPtr to be a pointer to an object of type long.
b) Assign the address of variable value1 to pointer variable longPtr.
c) Print the value of the object pointed to by longPtr.
d) Assign the value of the object pointed to by longPtr to variable value2.
e) Print the value of value2.
f) Print the address of value1.
g) Print the address stored in longPtr. Is the value printed the same as value1’s address?

Chapter 5 Pointers and Strings 385

5.11 Perform the task specified by each of the following statements:
a) Write the function header for function zero that takes a long integer array parameter

bigIntegers and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for function add1AndSum that takes an integer array pa-

rameter oneTooSmall and returns an integer.
d) Write the function prototype for the function described in part (c).

Note: Exercise 5.12 through Exercise 5.15 are reasonably challenging. Once you have
solved these problems, you ought to be able to implement most popular card games.

5.12 Modify the program in Fig. 5.24 so that the card dealing function deals a five-card poker
hand. Then write functions to accomplish each of the following:

a) Determine whether the hand contains a pair.
b) Determine whether the hand contains two pairs.
c) Determine whether the hand contains three of a kind (e.g., three jacks).
d) Determine whether the hand contains four of a kind (e.g., four aces).
e) Determine whether the hand contains a flush (i.e., all five cards of the same suit).
f) Determine whether the hand contains a straight (i.e., five cards of consecutive face

values).

5.13 Use the functions developed in Exercise 5.12 to write a program that deals two five-card
poker hands, evaluates each hand and determines which is the better hand.

5.14 Modify the program developed in Exercise 5.13 so that it can simulate the dealer. The deal-
er’s five-card hand is dealt “face down” so the player cannot see it. The program should then evaluate
the dealer’s hand, and, based on the quality of the hand, the dealer should draw one, two or three more
cards to replace the corresponding number of unneeded cards in the original hand. The program
should then reevaluate the dealer’s hand. [Caution: This is a difficult problem!]

5.15 Modify the program developed in Exercise 5.14 so that it handles the dealer’s hand, but the
player is allowed to decide which cards of the player’s hand to replace. The program should then eval-
uate both hands and determine who wins. Now use this new program to play 20 games against the
computer. Who wins more games, you or the computer? Have one of your friends play 20 games
against the computer. Who wins more games? Based on the results of these games, make appropriate
modifications to refine your poker-playing program. [Note: This, too, is a difficult problem.] Play 20
more games. Does your modified program play a better game?

5.16 In the card-shuffling and dealing program of Fig. 5.24, we intentionally used an inefficient
shuffling algorithm that introduced the possibility of indefinite postponement. In this problem, you
will create a high-performance shuffling algorithm that avoids indefinite postponement.

Modify Fig. 5.24 as follows. Initialize the deck array as shown in Fig. 5.36. Modify the
shuffle function to loop row-by-row and column-by-column through the array, touching every ele-
ment once. Each element should be swapped with a randomly selected element of the array. Print the
resulting array to determine whether the deck is satisfactorily shuffled (as in Fig. 5.37, for example). You
may want your program to call the shuffle function several times to ensure a satisfactory shuffle.

Note that although the approach in this problem improves the shuffling algorithm, the dealing
algorithm still requires searching the deck array for card 1, then card 2, then card 3 and so on.
Worse yet, even after the dealing algorithm locates and deals the card, the algorithm continues
searching through the remainder of the deck. Modify the program of Fig. 5.24 so that once a card is
dealt, no further attempts are made to match that card number, and the program immediately pro-
ceeds with dealing the next card.

386 Pointers and Strings Chapter 5

5.17 (Simulation: The Tortoise and the Hare) In this exercise, you will re-create the classic race
of the tortoise and the hare. You will use random-number generation to develop a simulation of this
memorable event.

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There is a clock that ticks once per second. With each tick of the clock, your program should
adjust the position of the animals according to the rules in Fig. 5.38.

Unshuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 14 15 16 17 18 19 20 21 22 23 24 25 26

2 27 28 29 30 31 32 33 34 35 36 37 38 39

3 40 41 42 43 44 45 46 47 48 49 50 51 52

Fig. 5.36 Unshuffled deck array.

Sample shuffled deck array

0 1 2 3 4 5 6 7 8 9 10 11 12

0 19 40 27 25 36 46 10 34 35 41 18 2 44

1 13 28 14 16 21 30 8 11 31 17 24 7 1

2 12 33 15 42 43 23 45 3 29 32 4 47 26

3 50 38 52 39 48 51 9 5 37 49 22 6 20

Fig. 5.37 Sample shuffled deck array.

Animal Move type
Percentage of
the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

Fig. 5.38 Rules for moving the tortoise and the hare.

Chapter 5 Pointers and Strings 387

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1, move
the animal back to square 1.

Generate the percentages in the preceding table by producing a random integer i in the range
1 ≤ i ≤ 10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 or a “slow
plod” when 8 ≤ i ≤ 10. Use a similar technique to move the hare.

Begin the race by printing

BANG !!!!!
AND THEY'RE OFF !!!!!

For each tick of the clock (i.e., each repetition of a loop), print a 70-position line showing the
letter T in the tortoise’s position and the letter H in the hare’s position. Occasionally, the contenders
land on the same square. In this case, the tortoise bites the hare and your program should print
OUCH!!! beginning at that position. All print positions other than the T, the H or the OUCH!!! (in
case of a tie) should be blank.

After printing each line, test if either animal has reached or passed square 70. If so, print the
winner and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!! YAY!!! If
the hare wins, print Hare wins. Yuch. If both animals win on the same clock tick, you may want
to favor the turtle (the “underdog”), or you may want to print It's a tie. If neither animal wins,
perform the loop again to simulate the next tick of the clock. When you are ready to run your pro-
gram, assemble a group of fans to watch the race. You’ll be amazed how involved the audience gets!

SPECIAL SECTION: BUILDING YOUR OWN COMPUTER
In the next several problems, we take a temporary diversion away from the world of high-level-lan-
guage programming. We “peel open” a computer and look at its internal structure. We introduce
machine-language programming and write several machine-language programs. To make this an
especially valuable experience, we then build a computer (using software-based simulation) on
which you can execute your machine-language programs!

5.18 (Machine-Language Programming) Let us create a computer we will call the Simpletron. As
its name implies, it is a simple machine, but, as we will soon see, a powerful one as well. The Sim-
pletron runs programs written in the only language it directly understands, that is, Simpletron Ma-
chine Language, or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All infor-
mation in the Simpletron is handled in terms of words. A word is a signed four-digit decimal num-
ber, such as +3364, -1293, +0007, -0001, etc. The Simpletron is equipped with a 100-word
memory and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load, or place, the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator will
start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory; thus, instruc-
tions are signed four-digit decimal numbers. Assume that the sign of an SML instruction is always
plus, but the sign of a data word may be either plus or minus. Each location in the Simpletron’s
memory may contain an instruction, a data value used by a program or an unused (and hence unde-
fined) area of memory. The first two digits of each SML instruction are the operation code that spec-
ifies the operation to be performed. SML operation codes are shown in Fig. 5.39.

The last two digits of an SML instruction are the operand—the address of the memory location
containing the word to which the operation applies.

388 Pointers and Strings Chapter 5

Now let us consider two simple SML programs. The first SML program (Fig. 5.40) reads two
numbers from the keyboard and computes and prints their sum. The instruction +1007 reads the
first number from the keyboard and places it into location 07 (which has been initialized to zero).
Instruction +1008 reads the next number into location 08. The load instruction, +2007, places
(copies) the first number into the accumulator, and the add instruction, +3008, adds the second
number to the number in the accumulator. All SML arithmetic instructions leave their results in the
accumulator. The store instruction, +2109, places (copies) the result back into memory location 09.
Then the write instruction, +1109, takes the number and prints it (as a signed four-digit decimal
number). The halt instruction, +4300, terminates execution.

Operation code Meaning

Input/output operations:

const int READ = 10; Read a word from the keyboard into a specific loca-
tion in memory.

const int WRITE = 11; Write a word from a specific location in memory to
the screen.

Load and store operations:

const int LOAD = 20; Load a word from a specific location in memory
into the accumulator.

const int STORE = 21; Store a word from the accumulator into a specific
location in memory.

Arithmetic operations:

const int ADD = 30; Add a word from a specific location in memory to
the word in the accumulator (leave result in accu-
mulator).

const int SUBTRACT = 31; Subtract a word from a specific location in memory
from the word in the accumulator (leave result in
accumulator).

const int DIVIDE = 32; Divide a word from a specific location in memory
into the word in the accumulator (leave result in
accumulator).

const int MULTIPLY = 33; Multiply a word from a specific location in memory
by the word in the accumulator (leave result in
accumulator).

Transfer-of-control operations:

const int BRANCH = 40; Branch to a specific location in memory.

const int BRANCHNEG = 41; Branch to a specific location in memory if the accu-
mulator is negative.

const int BRANCHZERO = 42; Branch to a specific location in memory if the accu-
mulator is zero.

const int HALT = 43; Halt—the program has completed its task.

Fig. 5.39 Simpletron Machine Language (SML) operation codes.

Chapter 5 Pointers and Strings 389

The SML program in Fig. 5.41 reads two numbers from the keyboard, then determines and
prints the larger value. Note the use of the instruction +4107 as a conditional transfer of control,
much the same as C++’s if statement.

Now write SML programs to accomplish each of the following tasks:
a) Use a sentinel-controlled loop to read positive numbers and compute and print their sum.

Terminate input when a negative number is entered.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

and compute and print their average.
c) Read a series of numbers, and determine and print the largest number. The first number

read indicates how many numbers should be processed.

Location Number Instruction

00 +1007 (Read A)

01 +1008 (Read B)

02 +2007 (Load A)

03 +3008 (Add B)

04 +2109 (Store C)

05 +1109 (Write C)

06 +4300 (Halt)

07 +0000 (Variable A)

08 +0000 (Variable B)

09 +0000 (Result C)

Fig. 5.40 SML Example 1.

Location Number Instruction

00 +1009 (Read A)

01 +1010 (Read B)

02 +2009 (Load A)

03 +3110 (Subtract B)

04 +4107 (Branch negative to 07)

05 +1109 (Write A)

06 +4300 (Halt)

07 +1110 (Write B)

08 +4300 (Halt)

09 +0000 (Variable A)

10 +0000 (Variable B)

Fig. 5.41 SML Example 2.

390 Pointers and Strings Chapter 5

5.19 (Computer Simulator) It may at first seem outrageous, but in this problem, you are going to
build your own computer. No, you will not be soldering components together. Rather, you will use
the powerful technique of software-based simulation to create a software model of the Simpletron.
You will not be disappointed. Your Simpletron simulator will turn the computer you are using into a
Simpletron, and you actually will be able to run, test and debug the SML programs you wrote in
Exercise 5.18.

When you run your Simpletron simulator, it should begin by printing

*** Welcome to Simpletron! ***

*** Please enter your program one instruction ***
*** (or data word) at a time. I will type the ***
*** location number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type the sentinel -99999 to stop entering ***
*** your program. ***

Your program should simulate the Simpletron’s memory with a single-subscripted, 100-ele-
ment array memory. Now assume that the simulator is running, and let us examine the dialog as we
enter the program of Example 2 of Exercise 5.18:

00 ? +1009
01 ? +1010
02 ? +2009
03 ? +3110
04 ? +4107
05 ? +1109
06 ? +4300
07 ? +1110
08 ? +4300
09 ? +0000
10 ? +0000
11 ? -99999

*** Program loading completed ***
*** Program execution begins ***

Note that the numbers to the right of each ? in the preceding dialog represent the SML program
instructions input by the user.

The SML program has now been placed (or loaded) into array memory. Now the Simpletron
executes your SML program. Execution begins with the instruction in location 00 and, like C++,
continues sequentially, unless directed to some other part of the program by a transfer of control.

Use variable accumulator to represent the accumulator register. Use variable counter to
keep track of the location in memory that contains the instruction being performed. Use variable
operationCode to indicate the operation currently being performed (i.e., the left two digits of the
instruction word). Use variable operand to indicate the memory location on which the current
instruction operates. Thus, operand is the rightmost two digits of the instruction currently being
performed. Do not execute instructions directly from memory. Rather, transfer the next instruction to
be performed from memory to a variable called instructionRegister. Then “pick off” the
left two digits and place them in operationCode, and “pick off” the right two digits and place
them in operand. When Simpletron begins execution, the special registers are all initialized to
zero.

Now let us “walk through” the execution of the first SML instruction, +1009 in memory loca-
tion 00. This is called an instruction execution cycle.

Chapter 5 Pointers and Strings 391

The counter tells us the location of the next instruction to be performed. We fetch the con-
tents of that location from memory by using the C++ statement

instructionRegister = memory[counter];

The operation code and operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now, the Simpletron must determine that the operation code is actually a read (versus a write, a
load, etc.). A switch differentiates among the 12 operations of SML.

In the switch structure, the behavior of various SML instructions is simulated as follows (we
leave the others to the reader):

The halt instruction also causes the Simpletron to print the name and contents of each register, as
well as the complete contents of memory. Such a printout is often called a computer dump (and, no,
a computer dump is not a place where old computers go). To help you program your dump function,
a sample dump format is shown in Fig. 5.42. Note that a dump after executing a Simpletron program
would show the actual values of instructions and data values at the moment execution terminated. To
format numbers with their sign as shown in the dump, use stream manipulator showpos. To disable
the display of the sign use stream manipulator noshowpos. For numbers that have fewer than four
digits, you can format numbers with leading zeros between the sign and the value by using the fol-
lowing statement before outputting the value:

cout << setfill('0') << internal;

Parameterized stream manipulator setfill (from header <iomanip>) specifies the fill character
that will appear between the sign and the value when a number is displayed with a field width of five
characters, but does not have four digits. (One position in the field width is reserved for the sign.)
Stream manipulator internal indicates that the fill characters should appear between the sign and
the numeric value.

Let us proceed with the execution of our program’s first instruction—+1009 in location 00. As
we have indicated, the switch structure simulates this by performing the C++ statement

cin >> memory[operand];

A question mark (?) should be displayed on the screen before the cin statement executes to
prompt the user for input. The Simpletron waits for the user to type a value and press the Enter key.
The value is then read into location 09.

At this point, simulation of the first instruction is complete. All that remains is to prepare the
Simpletron to execute the next instruction. The instruction just performed was not a transfer of con-
trol, so we need merely increment the instruction counter register as follows:

++counter;

This completes the simulated execution of the first instruction. The entire process (i.e., the
instruction execution cycle) begins anew with the fetch of the next instruction to execute.

read: cin >> memory[operand];

load: accumulator = memory[operand];

add: accumulator += memory[operand];

branch: We will discuss the branch instructions shortly.
halt: This instruction prints the message

*** Simpletron execution terminated ***

392 Pointers and Strings Chapter 5

Now let us consider how to simulate the branching instructions (i.e., the transfers of control).
All we need to do is adjust the value in the instruction counter appropriately. Therefore, the uncondi-
tional branch instruction (40) is simulated in the switch as

counter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0)
 counter = operand;

At this point, you should implement your Simpletron simulator and run each of the SML pro-
grams you wrote in Exercise 5.18. You may embellish SML with additional features and provide for
these in your simulator.

Your simulator should check for various types of errors. During the program loading phase, for
example, each number the user types into the Simpletron’s memory must be in the range -9999 to
+9999. Your simulator should use a while loop to test that each number entered is in this range
and, if not, keep prompting the user to reenter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as
attempts to divide by zero, attempts to execute invalid operation codes, accumulator overflows (i.e.,
arithmetic operations resulting in values larger than +9999 or smaller than -9999) and the like.
Such serious errors are called fatal errors. When a fatal error is detected, your simulator should print
an error message such as

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and should print a full computer dump in the format we have discussed previously. This will help the
user locate the error in the program.

REGISTERS:
accumulator +0000
counter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
 0 1 2 3 4 5 6 7 8 9
 0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 5.42 A sample dump.

Chapter 5 Pointers and Strings 393

MORE POINTER EXERCISES
5.20 Modify the card-shuffling and dealing program of Fig. 5.24 so the shuffling and dealing op-
erations are performed by the same function (shuffleAndDeal). The function should contain one
nested looping structure that is similar to function shuffle in Fig. 5.24.

5.21 What does this program do?

5.22 What does this program do?

1 // Ex. 5.21: ex05_21.cpp
2 // What does this program do?
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 void mystery1(char *, const char *); // prototype

10
11 int main()
12 {
13 char string1[80];
14 char string2[80];
15
16 cout << "Enter two strings: ";
17 cin >> string1 >> string2;
18 mystery1(string1, string2);
19 cout << string1 << endl;
20
21 return 0; // indicates successful termination
22
23 } // end main
24
25 // What does this function do?
26 void mystery1(char *s1, const char *s2)
27 {
28 while (*s1 != '\0')
29 ++s1;
30
31 for (; *s1 = *s2; s1++, s2++)
32 ; // empty statement
33
34 } // end function mystery1

1 // Ex. 5.22: ex05_22.cpp
2 // What does this program do?
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 int mystery2(const char *); // prototype

394 Pointers and Strings Chapter 5

5.23 Find the error in each of the following segments. If the error can be corrected, explain how.
a) int *number;

cout << number << endl;
b) double *realPtr;

long *integerPtr;
integerPtr = realPtr;

c) int * x, y;
x = y;

d) char s[] = "this is a character array";
for (; *s != '\0'; s++)
 cout << *s << ' ';

e) short *numPtr, result;
void *genericPtr = numPtr;
result = *genericPtr + 7;

f) double x = 19.34;
double xPtr = &x;
cout << xPtr << endl;

g) char *s;
cout << s << endl;

5.24 (Quicksort) In the examples and exercises of Chapter 4, we discussed the sorting techniques
of the bubble sort, bucket sort and selection sort. We now present the recursive sorting technique
called Quicksort. The basic algorithm for a single-subscripted array of values is as follows:

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less than
the element, and all values to the right of the element in the array are greater than the el-
ement). We now have one element in its proper location and two unsorted subarrays.

b) Recursive Step: Perform step 1 on each unsorted subarray.

10
11 int main()
12 {
13 char string1[80];
14
15 cout << "Enter a string: ";
16 cin >> string1;
17 cout << mystery2(string1) << endl;
18
19 return 0; // indicates successful termination
20
21 } // end main
22
23 // What does this function do?
24 int mystery2(const char *s)
25 {
26 int x;
27
28 for (x = 0; *s != '\0'; s++)
29 ++x;
30
31 return x;
32
33 } // end function mystery2

Chapter 5 Pointers and Strings 395

Each time step 1 is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, that
subarray must be sorted; therefore, that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final position of the
first element of each subarray? As an example, consider the following set of values (the element in
bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element with 37 until an
element less than 37 is found. Then swap 37 and that element. The first element less than
37 is 12, so 37 and 12 are swapped. The values now reside in the array as follows:

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare each

element with 37 until an element greater than 37 is found. Then swap 37 and that element.
The first element greater than 37 is 89, so 37 and 89 are swapped. The values now reside
in the array as follows:

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare each element
with 37 until an element less than 37 is found. Then swap 37 and that element. The first
element less than 37 is 10, so 37 and 10 are swapped. The values now reside in the array
as follows:

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element
with 37 until an element greater than 37 is found. Then swap 37 and that element. There
are no more elements greater than 37, so when we compare 37 with itself, we know that
37 has been placed in its final location of the sorted array.

Once the partition has been applied to the array, there are two unsorted subarrays. The subarray with
values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37 contains
89, 68 and 45. The sort continues with both subarrays being partitioned in the same manner as the
original array.

Based on the preceding discussion, write recursive function quickSort to sort a single-sub-
scripted integer array. The function should receive as arguments an integer array, a starting subscript
and an ending subscript. Function partition should be called by quickSort to perform the
partitioning step.

5.25 (Maze Traversal) The grid of hashes (#) and dots (.) in Fig. 5.43 is a double-subscripted ar-
ray representation of a maze. In the double-subscripted array, the hashes (#) represent the walls of the
maze and the dots represent squares in the possible paths through the maze. Moves can be made only
to a location in the array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit (assuming
that there is an exit). If there is not an exit, you will arrive at the starting location again. Place your right
hand on the wall to your right and begin walking forward. Never remove your hand from the wall. If
the maze turns to the right, you follow the wall to the right. As long as you do not remove your hand
from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the
one you have taken, but you are guaranteed to get out of the maze if you follow the algorithm.

396 Pointers and Strings Chapter 5

Write recursive function mazeTraverse to walk through the maze. The function should
receive as arguments a 12-by-12 character array representing the maze and the starting location of
the maze. As mazeTraverse attempts to locate the exit from the maze, it should place the charac-
ter X in each square in the path. The function should display the maze after each move so the user
can watch as the maze is solved.

5.26 (Generating Mazes Randomly) Write a function mazeGenerator that takes as an argu-
ment a double-subscripted 12-by-12 character array and randomly produces a maze. The function
should also provide the starting and ending locations of the maze. Try your function mazeTra-
verse from Exercise 5.25 using several randomly generated mazes.

5.27 (Mazes of Any Size) Generalize functions mazeTraverse and mazeGenerator of
Exercise 5.25 and Exercise 5.26 to process mazes of any width and height.

5.28 (Arrays of Pointers to Functions) Rewrite the program of Fig. 4.23 to use a menu-driven in-
terface. The program should offer the user five options as follows (these should be displayed on the
screen):

One restriction on using arrays of pointers to functions is that all the pointers must have the same
type. The pointers must be to functions of the same return type that receive arguments of the same
type. For this reason, the functions in Fig. 4.23 must be modified so they each return the same type
and take the same parameters. Modify functions minimum and maximum to print the minimum or
maximum value and return nothing. For option 3, modify function average of Fig. 4.23 to output
the average for each student (not a specific student). Function average should return nothing and
take the same parameters as printArray, minimum and maximum. Store the pointers to the four
functions in array processGrades, and use the choice made by the user as the subscript into the
array for calling each function.

5.29 (Modifications to the Simpletron Simulator) In Exercise 5.19, you wrote a software simula-
tion of a computer that executes programs written in Simpletron Machine Language (SML). In this

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

Fig. 5.43 Double-subscripted array representation of a maze.

Enter a choice:
 0 Print the array of grades
 1 Find the minimum grade
 2 Find the maximum grade
 3 Print the average on all tests for each student
 4 End program

Chapter 5 Pointers and Strings 397

exercise, we propose several modifications and enhancements to the Simpletron Simulator. In
Exercise 17.26 and Exercise 17.27, we propose building a compiler that converts programs written in
a high-level programming language (a variation of BASIC) to SML. Some of the following modifi-
cations and enhancements may be required to execute the programs produced by the compiler. (Note:
Some modifications may conflict with others and therefore must be done separately.)

a) Extend the Simpletron Simulator’s memory to contain 1000 memory locations to enable
the Simpletron to handle larger programs.

b) Allow the simulator to perform modulus calculations. This requires an additional Sim-
pletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires an additional
Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent
Simpletron Machine Language instructions.

e) Modify the simulator to allow output of a newline. This requires an additional Simpletron
Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be divided

into two groups, each holding a two-digit integer. Each two-digit integer represents the
ASCII decimal equivalent of a character. Add a machine-language instruction that will
input a string and store the string beginning at a specific Simpletron memory location.
The first half of the word at that location will be a count of the number of characters in
the string (i.e., the length of the string). Each succeeding half-word contains one ASCII
character expressed as two decimal digits. The machine-language instruction converts
each character into its ASCII equivalent and assigns it to a half-word.]

h) Modify the simulator to handle output of strings stored in the format of part (g). [Hint:
Add a machine-language instruction that will print a string beginning at a certain Sim-
pletron memory location. The first half of the word at that location is a count of the num-
ber of characters in the string (i.e., the length of the string). Each succeeding half-word
contains one ASCII character expressed as two decimal digits. The machine-language in-
struction checks the length and prints the string by translating each two-digit number into
its equivalent character.]

i) Modify the simulator to include instruction SML_DEBUG that prints a memory dump af-
ter each instruction executes. Give SML_DEBUG an operation code of 44. The word
+4401 turns on debug mode, and +4400 turns off debug mode.

5.30 What does this program do?

1 // Ex. 5.30: ex05_30.cpp
2 // What does this program do?
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 bool mystery3(const char *, const char *); // prototype

10
11 int main()
12 {
13 char string1[80], string2[80];
14

398 Pointers and Strings Chapter 5

STRING-MANIPULATION EXERCISES
5.31 Write a program that uses function strcmp to compare two strings input by the user. The
program should state whether the first string is less than, equal to or greater than the second string.

5.32 Write a program that uses function strncmp to compare two strings input by the user. The
program should input the number of characters to compare. The program should state whether the first
string is less than, equal to or greater than the second string.

5.33 Write a program that uses random-number generation to create sentences. The program
should use four arrays of pointers to char called article, noun, verb and preposition. The
program should create a sentence by selecting a word at random from each array in the following or-
der: article, noun, verb, preposition, article and noun. As each word is picked, it
should be concatenated to the previous words in an array that is large enough to hold the entire sen-
tence. The words should be separated by spaces. When the final sentence is output, it should start with
a capital letter and end with a period. The program should generate 20 such sentences.

The arrays should be filled as follows: The article array should contain the articles "the",
"a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl",
"dog", "town" and "car"; the verb array should contain the verbs "drove", "jumped",
"ran", "walked" and "skipped"; the preposition array should contain the prepositions
"to", "from", "over", "under" and "on".

After completing the program, modify it to produce a short story consisting of several of these
sentences. (How about the possibility of a random term-paper writer!)

5.34 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those de-
veloped in Exercise 5.33, write a C++ program that produces random limericks. Polishing this pro-
gram to produce good limericks is a challenging problem, but the result will be worth the effort!

5.35 Write a program that encodes English language phrases into pig Latin. Pig Latin is a form of
coded language often used for amusement. Many variations exist in the methods used to form pig Lat-
in phrases. For simplicity, use the following algorithm: To form a pig-Latin phrase from an English-
language phrase, tokenize the phrase into words with function strtok. To translate each English

15 cout << "Enter two strings: ";
16 cin >> string1 >> string2;
17 cout << "The result is "
18 << mystery3(string1, string2) << endl;
19
20 return 0; // indicates successful termination
21
22 } // end main
23
24 // What does this function do?
25 bool mystery3(const char *s1, const char *s2)
26 {
27 for (; *s1 != '\0' && *s2 != '\0'; s1++, s2++)
28
29 if (*s1 != *s2)
30 return false;
31
32 return true;
33
34 } // end function mystery3

Chapter 5 Pointers and Strings 399

word into a pig-Latin word, place the first letter of the English word at the end of the English word
and add the letters “ay.” Thus, the word “jump” becomes “umpjay,” the word “the” becomes
“hetay” and the word “computer” becomes “omputercay.” Blanks between words remain as
blanks. Assume that the English phrase consists of words separated by blanks, there are no punctua-
tion marks and all words have two or more letters. Function printLatinWord should display each
word. (Hint: Each time a token is found in a call to strtok, pass the token pointer to function
printLatinWord and print the pig-Latin word.)

5.36 Write a program that inputs a telephone number as a string in the form (555) 555-5555.
The program should use function strtok to extract the area code as a token, the first three digits of
the phone number as a token, and the last four digits of the phone number as a token. The seven digits
of the phone number should be concatenated into one string. Both the area code and the phone number
should be printed.

5.37 Write a program that inputs a line of text, tokenizes the line with function strtok and out-
puts the tokens in reverse order.

5.38 Use the string comparison functions discussed in Section 5.12.2 and the techniques for sort-
ing arrays developed in Chapter 4 to write a program that alphabetizes a list of strings. Use the names
of 10 or 15 towns in your area as data for your program.

5.39 Write two versions of each string copy and string concatenation function in Fig. 5.27. The
first version should use array subscripting, and the second should use pointers and pointer arithmetic.

5.40 Write two versions of each string comparison function in Fig. 5.27. The first version should
use array subscripting, and the second version should use pointers and pointer arithmetic.

5.41 Write two versions of function strlen in Fig. 5.27. The first version should use array sub-
scripting, and the second version should use pointers and pointer arithmetic.

SPECIAL SECTION: ADVANCED STRING-MANIPULATION EXERCISES
The preceding exercises are keyed to the text and designed to test the reader’s understanding of fun-
damental string-manipulation concepts. This section includes a collection of intermediate and
advanced string-manipulation exercises. The reader should find these problems challenging, yet
enjoyable. The problems vary considerably in difficulty. Some require an hour or two of program
writing and implementation. Others are useful for lab assignments that might require two or three
weeks of study and implementation. Some are challenging term projects.

5.42 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much attention
has been focused on whether William Shakespeare ever lived. Some scholars believe there is substan-
tial evidence indicating that Christopher Marlowe or other authors actually penned the masterpieces
attributed to Shakespeare. Researchers have used computers to find similarities in the writings of
these two authors. This exercise examines three methods for analyzing texts with a computer.

a) Write a program that reads several lines of text from the keyboard and prints a table in-
dicating the number of occurrences of each letter of the alphabet in the text. For example,
the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.
b) Write a program that reads several lines of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, etc., appearing in the text. For
example, the phrase

Whether 'tis nobler in the mind to suffer

400 Pointers and Strings Chapter 5

contains the following word lengths and occurrences:

c) Write a program that reads several lines of text and prints a table indicating the number
of occurrences of each different word in the text. The first version of your program
should include the words in the table in the same order in which they appear in the text.
For example, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the words “to” three times, the word “be” two times, the word “or” once, etc. A
more interesting (and useful) printout should then be attempted in which the words are
sorted alphabetically.

5.43 (Word Processing) One important function in word-processing systems is type justifica-
tion—the alignment of words to both the left and right margins of a page. This generates a profes-
sional-looking document that gives the appearance of being set in type rather than prepared on a
typewriter. Type justification can be accomplished on computer systems by inserting blank characters
between each of the words in a line so that the rightmost word aligns with the right margin.

Write a program that reads several lines of text and prints this text in type-justified format.
Assume that the text is to be printed on 8-1/2-inch-wide paper and that one-inch margins are to be
allowed on both the left and right sides of the printed page. Assume that the computer prints 10 char-
acters to the horizontal inch. Therefore, your program should print 6-1/2 inches of text, or 65 charac-
ters per line.

5.44 (Printing Dates in Various Formats) Dates are commonly printed in several different formats
in business correspondence. Two of the more common formats are

07/21/1955
July 21, 1955

Write a program that reads a date in the first format and prints that date in the second format.

5.45 (Check Protection) Computers are frequently employed in check-writing systems such as
payroll and accounts payable applications. Many strange stories circulate regarding weekly pay-
checks being printed (by mistake) for amounts in excess of $1 million. Weird amounts are printed by
computerized check-writing systems, because of human error or machine failure. Systems designers
build controls into their systems to prevent such erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash a check fraudulently. To prevent a dollar amount from being altered, most computer-
ized check-writing systems employ a technique called check protection.

Word length Occurrences

1 0

2 2

3 1

4 2 (including 'tis)

5 0

6 2

7 1

Chapter 5 Pointers and Strings 401

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose that a paycheck contains eight blank spaces in which the
computer is supposed to print the amount of a weekly paycheck. If the amount is large, then all eight
of those spaces will be filled, for example,

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordinarily
be left blank. For example,

 99.87

12345678

contains three blank spaces. If a check is printed with blank spaces, it is easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

***99.87

12345678

Write a program that inputs a dollar amount to be printed on a check and then prints the amount
in check-protected format with leading asterisks if necessary. Assume that nine spaces are available
for printing an amount.

5.46 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previous
example, we reiterate the importance of designing check-writing systems to prevent alteration of
check amounts. One common security method requires that the check amount be written both in num-
bers and “spelled out” in words. Even if someone is able to alter the numerical amount of the check,
it is extremely difficult to change the amount in words.

Write a program that inputs a numeric check amount and writes the word equivalent of the
amount. Your program should be able to handle check amounts as large as $99.99. For example, the
amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

5.47 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed
by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots
and dashes to each letter of the alphabet, each digit and a few special characters (such as period, com-
ma, colon and semicolon). In sound-oriented systems, the dot represents a short sound, and the dash
represents a long sound. Other representations of dots and dashes are used with light-oriented systems
and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or dash.
In a sound-oriented system, a space is indicated by a short period of time during which no sound is
transmitted. The international version of the Morse code appears in Fig. 5.44.

Write a program that reads an English-language phrase and encodes the phrase into Morse
code. Also write a program that reads a phrase in Morse code and converts the phrase into the
English-language equivalent. Use one blank between each Morse-coded letter and three blanks
between each Morse-coded word.

402 Pointers and Strings Chapter 5

5.48 (A Metric Conversion Program) Write a program that will assist the user with metric con-
versions. Your program should allow the user to specify the names of the units as strings (i.e., cen-
timeters, liters, grams, etc., for the metric system and inches, quarts, pounds, etc., for the English
system) and should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Your program should recognize invalid conversions. For example, the question

"How many feet in 5 kilograms?"

is not meaningful, because "feet" are units of length, while "kilograms" are units of weight.

A CHALLENGING STRING-MANIPULATION PROJECT
5.49 (A Crossword Puzzle Generator) Most people have worked a crossword puzzle, but few have
ever attempted to generate one. Generating a crossword puzzle is a difficult problem. It is suggested
here as a string-manipulation project requiring substantial sophistication and effort. There are many
issues that the programmer must resolve to get even the simplest crossword puzzle generator program
working. For example, how does one represent the grid of a crossword puzzle inside the computer?

Character Code Character Code

A .- T -

B -... U ..-

C -.-. V ...-

D -.. W .--

E . X -..-

F ..-. Y -.--

G --. Z --..

H

I .. Digits

J .--- 1 .----

K -.- 2 ..---

L .-.. 3 ...--

M -- 4-

N -. 5

O --- 6 -....

P .--. 7 --...

Q --.- 8 ---..

R .-. 9 ----.

S ... 0 -----

Fig. 5.44 Morse code alphabet.

Chapter 5 Pointers and Strings 403

Should one use a series of strings, or should double-subscripted arrays be used? The programmer
needs a source of words (i.e., a computerized dictionary) that can be directly referenced by the pro-
gram. In what form should these words be stored to facilitate the complex manipulations required by
the program? The really ambitious reader will want to generate the “clues” portion of the puzzle in
which the brief hints for each “across” word and each “down” word are printed for the puzzle worker.
Merely printing a version of the blank puzzle itself is not a simple problem.

