Pointers and Arrays

This lecture deals with Pointers and Arrays.

Chapter 5 K & R

Pointers and Arrays

A pointer 1s a variable that contains the address of a variable.
1.e. a pointer 1s a reference variable.

Pointers are much used in C, often their use 1s indispensible
to express a computation also their use can lead to compact
and efficient code.

Careless use of pointers can lead to chaos.

With discipline pointers can be used to achieve clarity and
simplicity.

Arrays and pointers are closely related in C

Pointers

The declaration
int *p;
makes p a " pointer to int ".

The value of p 1s the address of a location in memory, the
contents stored at that address are of type int.

int *p; can be read in two ways
1. *p 1s an int. Here * 1s the dereferencing operator.
2. pisoftypeint *.

Note *p 1s an expression wheras p is a variable.
Both interpretations are equivalent.

& : Address-of operator

The statement
p = &X;

makes p to point to x.

So the expressions x and *p are equivalent.

main()

{ .
it x;
int *p;
p = &x;
p=2

printf ("%d\n", x);
b

This program prints 2.

Pointers Declarations and Use

int x =1,y =2, z[10];

int *ip; /* 1ip 1s a pointer to int */
ip = &X; /* 1p now points to x */
y = *ip; /* yisnow 1 */
1p =0; / x1snow 0 */

ip = &z[0]; /* 1p now points to z[0] */

Declaration of a variable mimics the syntax of expressions in
which the variable might appear.

c.g.
double *dp, atof(char *);

Pointers and Referential Transparency

General Rule
If 1p points to integer x, then *1p can occur in any context
where x could. So *ip just stands for x.

*Ip = *1p +10; /* increments *ip by 10 */
Itisthesameas x = x + 10;

y = *ip + 1 /[*sameas y = x+1 *

ip +=1 / sameas Xx += 1 */
++*1p /* same as ++x */
(*1ip)++ /* same as x++ */

1pt++ / same as *(ip++) */

Assigning Pointers

int *ip, *i1q; /* declares ip and 1q as integer pointers */

1iqg = 1p; /* copies contents of ip into 1q so that 1q
points to whatever 1p pointed to */

The declaration

int * 1p, 1q;
does not declare both ip and 1q as integer pointers, it declares
1p as integer pointer and 1q as an integer variable.

Pointers and Function Arguments

void swap(int X, inty) /* wrong */
{
int temp;
temp = X;
X=Y
y = temp;
;
The call
swap (a, b);

will NOT affect the arguments a and b as the function only
swaps only copies of a and b.

Pointers and Function Arguments

void swap(int *px, int *py) /* interchange *px and *py */

{

int temp;

temp = *px;

*PX = *py;
*py = temp;
}
The call

swap (&a, &b);
will interchange the values of a and b.

Pointer arguments enable a function to access and change
objects 1n the function that called it.

Pointers and Arrays

Arrays and Pointers are closely related.

Array subscripting can be achieved using pointers, often the
pointer version is more efficient.

Declaration

int a[10];
defines an array a of size 10, a block of 10 consecutive
objects named a[0], a[1]...., a[9]

a[1] refers to the i1-th element of the array.
int *pa; /* pa 1s an int pointer */

pa = &al[0]; /* pa points to the element a[0] */
X = *pa; /* same effectas x = a[0]; */

Pointer Arithmetic

int *pa; /* paisan int pointer */
pa = &a[0]; /* papoints to the element a[0] */
X = *pa; /* same effectas x = a[0]; */

If pa points to an element of an array,
pa+1 points to the next element,

pa+1 points to 1 elements after pa

pa-i points 1 elements before pa

if pa points to a[0]
*(pat1) refers to the contents of a[1]
*(pat1) refers to the contents of a[i]

The above pointer arithmetic true regardless of the type or
size of the variables in the array.

Pointer Arithmetic and Array Indexing

pa = &a[0]; /* pa and a have identical values */

The name of an array 1s a synonym for the location of the
initial element.

pa = &a[0]; can also be written as
pa =a;

a[1] can also be written as *(a+1).

In evaluating a[1], C converts it to *(a+1) immediately;
so the two forms a[i] and *(a+1) are equivalent.

Applying & operator to both parts of above equivalence,
&a[1] and (a+1) are also identical.

Pointer Arithmetic and Array Indexing

If pa 1s a pointer expression may use it with a subscript,
pa[i] 1s identical to *(pa+i).

Array and index-expression i1s equivalent to a pointer and
offset-expression.

A basic difference between an array name and a pointer:
A pointer 1s a variable so pa =aand pa++ are legal.

But an array name 1s not a variable, so constructions such as
a = pa and a++ are illegal.

Arrays as function arguments - 1

/* strlen: return length of a string s */

int strlen (char *s)

{

Int n;

for (n =0; *s != "\0"; s++)

n+r;

return n;
;
strlen ("hello, world"); /* a string constant */
strlen (array); /* char array[100]; */
strlen (ptr); /* char *ptr; */

The above calls to strlen() are legal

Arrays as function arguments - 2

When an array name is passed to a function what 1s passed is
the location of the 1nitial argument. Within the called function
this argument is a local variable and so array name parameter
1S a pointer, i.e, a variable containing an address.

As formal parameters in a function definition
char s[] and char *s

are equivalent.

char *s 1s preferred as its says more explicitly that the
parameter is a pointer.

When an array name is passed to a function the function can
at 1ts convenience treat it either as an array or as a pointer.

Array, Pointer duality in function argument

Arrays as function arguments - 3

It 1s possible to pass part of an array to a function by passing
a pointer to the beginning of the subarray.

If a 1s an array
f(&a[2]) and f(at2)

both pass to the function f the address of the subarray that
starts at a[2].

Within f the parameter declaration can read

f(int arr[]) {...} or {f(int ‘*arr) {...}

Arrays and Pointers

p[-1], p[-2], ... are syntatically legal and refers to elements
that immediately precede p[0] if the elements exist.

