Pointers and Arrays (contd)

This lecture deals with Pointers and Arrays.

Chapter 5 K & R



Pointer Address Arithmetic

If p points to some element of an array, then

p++ increments p to point to the next element,
p+=1 increments p to point to 1 elements beyond

C 1s consistent and regular 1n its approach to address
arithmetic; its integration of pointers, arrays, and address
arithmetic is one of the strengths of the language.

Pointer arithmetic is consistent: if p is a pointer to int (float)
then p++ advances to next int (resp. float)

All pointer manipulations automatically take into account
the size of the object pointed to.



Pointer Address Arithmetic

The following pointer operations are 1llegal

To add two pointers

To multiply or divide or shift or mask pointers
To add float or double to pointers

To assign a pointer of one type to a pointer of another type
without a cast (except for void *)



Character Pointers and Functions

A string constant
" This is a string "
1s an array of characters.

In the internal representation of a string , the array is
terminated with the null character "\0'.

Storage requirement 1s one greater than the number of
characters between the double quotes.

The double quotes are string delimiters and are not a part of
the string.



Character Pointers and Functions

printf ("hello, world\n");

Here a string constant is passed as an argument to the
function printf(). The access to it 1s through a character
pointer.

So printf() receives a pointer to the beginning of a character
array.

A string constant 1s accessed by a pointer to its first element.



Character Pointers and Functions

char *pmessage; /* pmessage 1s a char pointer */

pmessage = "now is the time";

The above statement assigns to pmessage a pointer to the
character array.

char amessage[] = "now is the time"; /* an array */
char *pmessage = "now is the time"; /* a pointer */

Notice the difference between the above definitions.



strepy

/* strcpy: copy ttos, array subscript version */

void strcpy(char *s, char *t)

d

int 1;

1 = 0;
while ((s[1] = t[1]) != '\0")
I++;



strepy

/* strcpy: copy ttos, pointer version 1 */

void strcpy(char *s, char *t)
{
while ((*s = *t) 1="'\0") {
ST,
t+:

5



strepy

/* strcpy: copy t tos, pointer version 2 */

void strcpy(char *s, char *t)

{

while ((*s++ = *t++) 1= '\0")

5



Ultimate strcpy - C 1diom

/* strcpy: copy t tos, pointer version 3 */

void strcpy(char *s, char *t)

d

while (*s++ = *t++)

>



strcmp - array version

/¥ stremp: return <O if s<t, 0ifs=t, >01f s>t */

void strcmp(char *s, char *t)

d

int 1;

for 1=0; s[i] = t[i]; 1++)
if (s [1] = "\0")
return 0O;
return s[1] - t[1];



strcmp - pointer version

/¥ stremp: return <O if s<t, 0ifs=t, >01f s>t */

void strcmp(char *s, char *t)

v
it 1,
for (; *s == *t; st++, t++)
if (s [1] = "\0")

return O;
return *s - *t;



Some C Idioms

*p++ = val; /* push val onto stack */
val = *--p; /* pop top of stack into val */
while (*s++ = *t++) /* for copying a string */

5

while ((c = getchar()) != EOF)



Pointer Arrays

Motivation

Sorting lines of text of different lengths. (K&R page 107)

char *lineptr[ MAXLINES];
declares linepointer is an array of size MAXLINES elements,
cach element of which 1s a pointers to char.

Thus
lineptr[i] 1s a character pointer and

*lineptr[1] 1s the character it points to



swap

/* swap: interchanges pointers v[i] and v[j] */

void swap (char *v[], int 1, it j)

d

char *temp;

temp = v[i];
vi] = v[j];
v[j] = temp;



Multidimensional Arrays

C allows arrays of any dimesnsion to be defined.
Multidimensional arrays are much less used than arrays of
pointers.

A two dimenional array can be declared in the same way as
a one dimensional array is declared.

int a[4][5];
declares array a to be a two dimensional array of 4 rows
and 5 columns and each position contains an integer value.

Initialization of a declared array is similar to the one
dimensional case
e.g. It a[2][3]= {
{1, 2, 3},
{4, 5, 6}
s



Multidimensional Arrays

If a two dimensional array 1s passed to a function, the
parameter declaration in the function must include the
number of columns.

e.g. 1f an array declared as

char daytab[2][13];
1s to be passed to a function f, the declaration of f would be

flint daytab [2][13]) { ... }

fint daytab [][13]) { ... }

flint (*daytab [13])) { .. }

In general the first dimension of an array 1s free, all others
have to be specified.



Pointers vs Multidimensional Arrays

int a[10][20];

it *b[10];



Declarations
int *f()
mt (*pf)()
char *Eargv
it (*daytab) [13]
void  *comp( )

vold  (*comp) ()

char — (*(*x())[1) ()
char  (*(*x[3])()) [3]



