Structures

This lecture deals with Structures.

Chapter 6 K & R

Structures

A structure puts together one or more variables of possibly
different types under a single name.

Structures permit a group of related variables to be treated as
a unit. So structures help to organize complex data.

Structures can be built in a hierarchical manner

e.g. A point can be defined as a pair of coordinates,
a rectangle can be defined as a pair of points etc.

Structure assignment permits structures to be copied.
Structures can be passed to functions and returned by
functions.

Structures - Syntax

e.g.
/* decalres the structure of type called point */
struct point {
nt x;
it y;

¥

/* defines a variable pt of type struct point */
struct point pt;

/* both can be combined as follows */
struct point {
nt x;
int y;
}pt;

Structure Initialization

Structure Initialization

eg.
struct point origin = {0, 0};

Note that the initializers are constant expressions.

An automatic structure may also be initialized by assignment
or by calling a function that returns a structure of the right

type.

"." -The Dot Operator

The member of a particular structure 1s referred to in an
expression by the form

structure-name.member

The structure membr operator " . " connects the structure
name and the member name.

e.g.
struct point pt;

printf ("%d, %d", pt.x, pt.y);

pt.x = pt.x + pt.y;

Nested Structures

Structures can be nested , 1.€., can be built into a hierarchy.
c.g. /* defines a type called rect */

struct rect {
struct point ptl;
struct point pt2;

s
struct rect screen; /* declares variable screen */

screen.ptl.x /* refers to the x coordinate of the
ptl member of screen */

Structure Operations

Legal operations on structures:
copying it or assigning to it as a unit
taking its address with &
accessing its members

Copy and assigment include passing arguments to functions
and returning values from functions as well

Structures may be initialized by a list of constant member
values, an automatic structure may also be 1nitialized by an
assignment.

No other operation is permitted in particular structures may
not be compared

Structures and Functions

/* function makepoint takes two integers and returns
a point structure */

struct point makepoint (int x, int y)

d
struct point temp;
temp.x = X;
temp.y = y;
return temp;

)

Note that x (as well as y) 1s used both as argument name and
member name without any problem.

Structures and Functions

/* function makepoint can be used to initialize any structure
dynamically */

struct rect screen;
struct point middle;
struct point makepoint(int, int);

screen.ptl = makepoint (0, 0);

screen.pt2 = makepoint (XMAX, YMAX);

middle = makepoint ((screen.ptl.x + screen.pt2.x) / 2,
(screen.ptl.y + screen.pt2.y) / 2);

Structures and Functions

/* addpoint: add two points */

struct point addpoint (struct point p1, struct point p2)

d
pl.x += p2.x;

pl.y += p2.y;
return pl;

)

Structure parameters are passed by value like any others.

Pointers to Structures

If a large structure 1s to be passed to a function, it is often
more efficient to pass a pointer than to copy the whole
structure.

Structure pointers are like pointers to ordinary variables.
struct point *pp; /* declares pp as a pointer */

If pp points to a point structure (as in the above declaration),

*pp 1s a structure
(*pp).x and (*pp).y are the members.

Pointers to Structures

struct point origin, *pp;

pp = &origin;
printf ("origin is (%d, %d)\n", (*pp).x, (*pp).y);

Note: The parentheses are necessary in (*pp).x because
the precedence of the structure member operator . is higher
than *.

The expression *pp.x means *(pp.x) which is illegal
as X 1s not a pointer.

">"_ The'Arrow' Operator

If p 1s a pointer to a structure, then

p -> member-of-structure
refers to a particular member.

struct point origin, *pp;

pp = &origin;
printf ("origin 1s (%d, %d)\n", pp ->x, pp ->y);

">"_ The'Arrow' Operator

Both . and -> associate left to right.
struct rectr, *rp = &r;

the following expressions are equivalent

r.ptl.x

rp -> ptl.x
(r.ptl).x

(rp ->ptl).x

The Structure Operators

The structure operators . and -> together with () for function
calls and [] for subscripts are at the top of the precedence
hierarchy and thus bind very tightly.

struct {
int len;
char *str;
}*p;

++p ->len /* increments len, not p */
(++p) ->len /* increments p before accessing len */

(p++) ->len /* increments p after accessing len */

The Structure Operators

struct {
int len;
char *str;
}*ps

p ->str / same as *(p ->str), fetches what str points to*/

p ->str++ / increments str after accessing whatever it
points to (just like *s++) */

(*p->str)++ /* increments whatever str points to */

p++->str / increments p after whatever str points to */

Arrays of Structures

struct key{
char *word,;
Int count;

} keytab[NKEYS];

The above declares a structure type key and defines
an array keytab of structres and sets aside storage for them.
Each element of the array keytab is a structure.

Another way of doing this is:

struct key{
char *word;
Int count;
!5

struct key keytab[NKEYS];

Self-referential Structures

struct tnode{ /* the tree node */
char *word;
Int count;
struct tnode *left; /* left child */

struct tnode *right; /* right child */
I

The above 1s a recursive definition of tnode

It 1s 1llegal for a structure to contain an instance of itself, but
struct tnode *left;
declares left to be a pointer to tnode, not a tnode itself.

Typedef

Typedef facility can be used to create new data type names.
It only creates a synonym and not a new type.

typedef int Length; /* makes name Length a synonym for int */

Length len, maxlen;
Length *lengths]];

typedef struct tnode *Treeptr;

typedef struct tnode{ /* the tree node */
char *word,;
Int count;
Treeptr left; /* left child */

Treeptr right; /* right child */
} Treenode;

Typedef

Treeptr talloc(void)
{

return (Treeptr) malloc (sizeof(Treenode));

b

Unions

A union 1s a variable that may hold (at different times) objects of
different types and sizes

union u_tag {
int 1val;
float fval,;
char *sval;

§us
The variable u 1s large enough to hold the largest of the three types.

Members of union are accessed as
union-name.member
or
union-pointer ->member

Command Line Arguments

#include <stdio.h>
/* echo command-line arguments - version 1- page 115 K&R*/

main(int argc, char *argv[])

{ . .
Iint 1;
for(1 =1; 1 < argc; 1++)
printf("%s ", argv[i]);
printf ("\n");
return O;
;

The program myecho.c compiled as
gcc myecho.c -o myecho
will produce the executable file myecho.

$ myecho hello, world
produces the output

hello, world

Command Line Arguments

argc and argv are a C mechanism for getting program
arguments from the command line.

argc and argv parameters are passed automatically
to the main () function by the operating system.

argc 1s the number of command line words, including the
command name

if the program 1s executed with the command
myecho hello, world
then argc 1s 3.

Command Line Arguments

The declaration

char *argv([]
indicates that argv 1s an array of pointers to characters,
1.e., argv 1s an array of character strings.

The number of entries of argv 1s argc.

The first one, argv[0], 1s the program name.

The rest, argv[1] ... argv[argc-1], are the command line
arguments.

In the command
myecho hello, world
argv[0] - "myecho"
argv[1] - "hello,"
argv[2] - "world"

Command Line Arguments

argc is the number of command-line arguments the
program 1s invoked with

argv 1s a pointer to an array of character strings that
contain the argument,one per string

argv[0] 1is the name by which the program is invoked

argc 1s at least 1

argv[1] 1s the first operational argument
argv[argc-1] 1s the last operational argument
argv[argc] 1s a null pointer

Command Line Arguments

#include <stdio.h>
/* echo command-line arguments - version 2- page 115
K&R*/
main(int argc, char *argv[])
{
while(--argc > 0)
printf ("%s ", *++argv);
printf("\n");
return O;
;
$ myecho hello, world

produces the output
hello, world

Command Line Arguments

argc is the number of command-line arguments the
program 1s invoked with

argv 1s a pointer to an array of character strings that
contain the argument,one per string

argv[0] 1is the name by which the program is invoked

argc 1s at least 1

argv[1] 1s the first operational argument
argv[argc-1] 1s the last operational argument
argv[argc] 1s a null pointer

Command Line Arguments

#include <stdio.h>

/* echo command-line arguments - version 3%/
main(int argc, char **argv)

d
while(--argc > 0)
printf ("%s %s" , *++argv, (1<arge-1) ? "":"");
printf("\n");
return O;
;

$ myecho hello, world
produces the output
hello, world

Command Line Arguments

Note that each element of the array argv [] is a string. This aspect 1s
brought out by the program below

#include <stdio.h>
/* power program with command line arguments™/
main(int argc, char *argv]])
{
double x;
nt n;

if (argc <3) {
printf (" missing arguments, power [base] [index]\n");

exit(1);
}
else {
x = atof (argv [1]);
n = atoi (argv [2]);
printf ("%f \n", power(x, n));
exit(0);
}

